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I. SUMMARY 

This report presents the design of an active control landing gear system 

for a supersonic aircraft, the purpose of which is to minimize the forces to which 

the aircraft is subjected as a result of landing impact and rollout, takeoff, and 

taxi operations. It includes the design of an electronic controller and modifi- 

cations of the existing landing gear. 

The electronic controller compares the kinetic energy of the aircraft with 

the work potential of the gear until the work potential exceeds the kinetic 

energy. The wing/gear interface force present at this condition becomes the 

command force to a servo loop which maintains the wing/gear interface force 

at this level by providing a signal to an electrohydraulic servovalve to port 

flow of hydraulic fluid into or out of the landing gear shock strut piston. 

II. INTRODUCTION 

Hydraulic Research Textron (HR) was retained under NASA Contract 

NASl- 15455 to design a flightworthy electronic controller and to design modifi- 

cations to the landing gear of a supersonic aircraft in order to accommodate 

active control of the landing gear system which minimizes the aircraft loads 

during takeoff, landing impact, rollout and taxi. The work was divided into 

several phases. 

(1) Analysis to confirm the performance of the aircraft under conditions 

of active control of the landing gear. Use was made of a digital computer 

program developed and supplied by NASA which included aerodynamic simula- 

tion and landing gear dynam its. Additions were made to this program to include 

effects such as line losses imposed by the physical design. 

(2) Design of the electronic controller and its packaging. 



(3) The hydromechanical design required to reconfigure the landing 

gear to make it amenable to the active control concept,and the design of 

associated hardware. In addition, design drawings were prepared for the 

proper installation of supporting hardware including hydraulic lines and 

accumulators. 

(4) Establishment of the preliminary specification for the electro- 

hydraulic servovalve. 

This work was an extension of the work done under NASA Contract 

NASl- 14459 which involved the design of an electronic controller for an active 

control landing gear for a light aircraft as described in Reference 1. 

Use of trade names or names of manufacturers in this report does not 

constitute an official endorsement of such products or manufacturers, either 

expressed or implied, by the National Aeronautics and Space Administration. 

III. SYMBOLS 

FLC 

FL1 
F min 

=w 

M 

PE 

KE 

VS 

Vt 
V wg 

xm 

X.5 

limit force command, N (lb) 

value of limit force command during impact, N (lb) 

minimum value of Fwg for which the force loop remains enabled 

during rollout, N (lb) 

wing/gear interface force, N (lb) 

aircraft mass, N l sec2/m (lb sec2/ft) 

work potential of the strut, N l m (ft lb) 

aircraft kinetic energy, N l m (ft lb) 

aircraft sink rate at touchdown, m/set (ft/ set) 

transition velocity, m/ set (ft/ set) 

velocity of the wing/ gear interface, m/set (ft/ set) 

maximum strut deflection, m (ft) 

strut deflection, m (ft) 
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IV. CONTROLLER. FUNCTIONAL DESCRIPTION 

-. The controller monitors sensor data and performs computations involving 

velocity, energy and signal conditioning to provide an output signal which serves 

as an input command to the servovalve. The controller is designed to operate 

with the following aircraft-mounted sensors and control hardware. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Wing/gear accelerometer which senses the acceleration (force, 

assuming constant aircraft mass) at the wing/gear interface. This 

signal provides the feedback for the force loop and is also used to 

compute energy. Integration of this signal provides the wing/gear 

velocity. 

Strut pressure transducer which senses the hydraulic pressure in 

the strut. This signal is used to close the pressure loop which 

maintains the static design pressure in the strut prior to enablement 

of the servoloop. 

Wheel generator which senses the speed of thewheel upon landing. 

This signal is used to sense touchdown. 

Strut position synchro which senses the strut extension. This signal 

provides the feedback for the position loop and is also used in the 

computation of the strut work potential. 

Scissors switch which senses weight on gear and is an indication of 

whether the aircraft is airborne or on the ground. This signal 

is used to determine the mode of operation of the controller. 

Sink rate sensor which senses the sink rate of the aircraft. This 

signal is algebraically summed with the wing/gear velocity signal 

to provide the total velocity signal. The controller contains provisions 

for using a pre-set sink rate if an aircraft-mounted sink rate sensor 

is not available. 

Servovalve which is driven by a signal representing the amplified 

loop error, as modified by the control laws, and causes hydraulic 
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fluid to be ported into or out of the strut to maintain the wing/gear 

interface force at the level of the limit force command. 

The characteristics of these components are given in Table I. 

TABLE I 

CHARACTERISTICS OF AIRCRAFT-MOUNTED COMPONENTS 

(Unless otherwise indicated all voltages are dc) 

Sensor 

W/G Accelerometer 
Strut Pressure 
Transducer 

Wheel Generator 

Strut Position Sensor 

Scissors Switch 

Sink rate Sensor 

Servovalve 

Sensitivity 

2 mV/g @ 5Vdc Excitation 
O.O0232mV/kPa (O.OlGmV/psi) 

19. 6 mV/rpm 

19. 6 Vrms/m (0. 5 Vrms/in) 
(400 Hz) 

Discrete - Closed on ground 

O.l312V/m/sec 
(O.O4V/ft/sec) 

0.00111 f 1. 1x10-4m3/sec/ 
mA (17. 6*148 gpm/mA) 
at 2.068~10 kPa (3000 psi) 

T 
1 

I 

The controller has three basic functions which are: 

(1) Operating mode determination 

(2) Limit-force command determination, and 

(3) Control-law implementation 

--_ -.. 

Range- 

f 4.12 g’s 
1. 72x104kPa 
(2500 psi) 

O-2400 rpm 
(156 knots) 

O-O. 508m (20 in) 

0.0221 f 0.0022 m3 
lsec (351532 gpm) 
at 2.068~10 kPa 
(3000 psi) 



A. Operating- Mode Determ inat ion 

When the controller is enabled it automatically*determines the operating 

mode-landing or takeoff. 

1. Landing Mode. - The controller selects the landing mode if power has been 

applied and the scissors switch signal indicates that the aircraft is airborne. 

The landing mode is divided into several phases, each imposing a different 

functional demand on the controller. These are: 

(1) Pre-touchdown 

(2) Active control initiation 

(3) T rans it ion 

(4) Rollout 

During the pre-touchdown phase, the system is essentially in a passive 

configuration. However, the controller provides a bias signal to the servovalve 

to maintain the strut hydraulic pressure equal to the design charging pressure. 

This is accomplished by a pressure control loop in which the hydraulic pres- 

sure is the feedback signal. During this phase the controller also receives a 

signal from an external source which is representative of the aircraft sink rate 

at touchdown. In addition, it monitors the strut deflection. However, the servo- 

loop is not enabled and, therefore, the wing/gear interface force is not controlled. 

Active control is initiated when the energy relationships indicate that the 

work potential of the strut exceeds the kinetic energy of the aircraft, Upon 

such occurrence, the controller causes the following events to occur. 

(1) The servoloop is enabled. 

(2) An output is generated which is proportional to the 

force error as dynamically modified by the control 

laws. This output is applied to the servovalve. 

(3) Energy computations are discontinued. 

(4) A constant limit force is maintained. 

(5) The strut pressure loop is opened. 

(6) The servovalve bias is removed. 



(7) The transition velocity is computed and continuously 

compared to the incremental wing/gear velocity to 

determine the start of transition. 

Transition to the rollout phase occurs when the incremental wing/gear 

velocity equals the transition velocity. During transition, the controller 

linearly decreases the limit force command until a pre-set limit value is 

reached. 

The rollout phase commences when the limit force command during 

transition reaches a pre-set minimum value. During this phase, if the wing/ 

gear force is within a band of f the limit value, the limit command force is 

maintained at zero and the force loop is opened. If the wing/gear force 

exceeds the limit value in either polarity then the force loop is closed and the 

limit force command is maintained at the limit value, with the polarity of the 

wing/gear force. The controller remains in this mode until power is removed 

by means of the cockpit switch which de-energizes the solenoid valves thus 

isolating the gears from the servovalves. 

2. Takeoff Mode. - The controller selects the takeoff mode when (1) a controller- 

enable signal has been received and (2) the scissors switch signal indicates 

that the aircraft is on the ground. At takeoff the servoloop is active but the 

limit force command is maintained at zero. 

The sequence of events is shown in the flow diagram of. Figure 1. 

B. Limit Force Command Determination 

Prior to the time when the servoloop is enabled, the limit force command 

is equal to the wing/gear interface force,but since the servovalve path is 

open, it has no effect. The value of the wing/gear interface force at the 

instant the servoloop is enabled becomes the limit force command throughout 

the impact phase. As indicated above, during the transition phase, the limit 

force command is decreased linearly at a pre-set rate until it reaches a 
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ENABLE 

i 

INTEG. 
SET LIGHTS 

CALCULATE 
SINK RATE- 

CALCULATE 
ENERGIES 

ENABLE 
SERVOLOOP 
COMMAND 
LIMIT 
FORCE 

I 

I CALCULATE 
VT 

I 

LINEARLY 
DECREASE 
LIM. FORCE 
COMMAND 

CLOSE FORCE 

SERVOLOOP 

Figure 1. Controller Sequence of Events 
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pre-set value (Fmin ). After this time, the limit force is zero if the absolute 

value of the wing/gear interface force is less than F min’ If the absolute value 

of the wing/gear interface force is greater than F min, then the limit force 

command is equal to F min and its polarity is that of the wing/gear interface 

force. 

In the takeoff mode the limit force command is maintained at zero. 

C. Control Law Implementat ion 

The controller implements the control laws as shown in Figure 2 and the 

transfer functions are shown in Table II. 

V. CONTROLLER DESIGN 

The controller. accepts the following signals : 

(1) Wing/gear acceleration (force). 

(2) Sink rate. 

(3) Strut Posit ion. 

(4) Strut pressure. 

(5) Wheel speed. 

(6) Weight on gear. 

It processes these signals to generate: 

(1) Wing I gear veloc ity 

(2) Work potential of the strut 

(3) Kinetic energy of the aircraft 

(4) Limit force command 

(5) Transit ion velocity 

(6) Servovalve drive signal 
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WING/GEAR ACCELEROMETER 

r ---me 

GAIN 

LIMIT FORCE 
COMMAND + 

SERVOLOOP 
ENABLE + 
LOGIC 

GAIN & 
SHAPING 

CONTROLLER 
5 = GENERATED 

SIGNAL 

----------- 
1 CONTROLLER 

I 

I 

1 Ir -m---- 
GAIN & 

SHAPING I 
+ 

) SERVOVALVE -b SYSTEM 

I 
1 j 

I I 

I I Al RCRAFT AND 

II LANDING GEAR 
------ 

I 

STRUT POTENTIOMETER 

W 

Figure 2. Control Law Functional Schematic 



TABLE II. CONTROL LAW TRANSFER FUNCTIONS 

SYMBOL 
(REF. FIGURE 2 ) TRANSFER FUNCTION PARAMETER VALUES 

Cl KWG KWG = l.OV/V 

Gzl (s’ + 2&w 1s + w:)(T# + 110’8 + 1 )KA 
(s* + 25 wlS + wl%Tls+l)(T,S i- 1) 

Tl q 0.0281 set 
Tz! = 0.0141 set 
T3 = 0.001 set 
T, = 0.0001 set 

251.3 radlsec 
;“: : 0.1 

6 = 5.1 
KA q l.OV/Vnominal 

(variable from 50% 
to 200% of nominal) 

G3 
KF 

TFS + 1 KF = 196.9V/M (5.OV/in. ) 
TF = 0.1 set 



A. Wing/Gear Velocity 

The wing/gear velocity is generated by integrating the wing/gear accel- 

eration’signal from the accelerometer mounted at the wing/gear interface. 

To prevent drift, the integrator is not enabled until touchdown which is indi- 

cated by wheel spin-up. 

B. Work Potent ial of the Strut 

The work potential of the strut is computed by using an analog multiplier 

to form the product of the wing/gear force (from the accelerometer) and the 

available stroke. The available stroke is obtained by subtracting the actual 

stroke (from the strut position sensor) from the maximum stroke. 

C. Kinetic Energy of the Aircraft 

Kinetic energy is computed by using an analog multiplier to square the 

algebraic sum of the wing/gear velocity and sink rate. Since the mass of the 

aircraft is considered to be constant, the quantity thus obtained is a measure 

of the kinetic energy. 

D. Limit Force Command 

As indicated previously, prior to control initiation the limit force command 

is equal to the wing/gear interface force, but since the servoloop is disabled, 

it has no effect. The wing/gear force is applied to a sample-and-hold circuit. 
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After impact, when the two forms of energy become equal, the input to 

the sample-and-hold circuit is removed, thereby maintaining the limit force 

command at a constant level, as required. When the total velocity becomes 

equal to the transition velocity (as described below), the output of the sample- 

and-hold circuit is allowed to decay; and therefore, the limit force command 

decreases as required. 

When the limit force command reaches a preset value, in the range of 

8900 N (2000 lb), then the limit force command is a function of the wing/gear 

force. If the absolute value of the wing/gear force is less than the preset value 

(determined by a comparator) the limit force is set to zero. If it is greater 

than the present value, then the limit force is set to the preset value and given 

the polarity (sign) of the wing/gear force. 

E. Trans it ion Velocity 

The transition velocity is obtained by mathematically squaring, by means 

of an analog multiplier, the value of the limit force command during impact. 

Since the mass of the aircraft and the transition decay rate are constant, the 

value thus obtained is a measure of the transition velocity. 

F. Servovalve Signals 

The loop error signal, which is the algebraic sum of the limit force 

command, wing/gear force, and position error, is amplified and passed 

through the shaping networks (derived by means of operational amplifiers and 

passive components) and applied to the servovalve driver stage which in turn 

drives the servovalve. The servovalve driver stage produces a current pro- 

portional to the input voltage. Prior to servoloop enablement the servovalve 

driver stage also receives the strut pressure signal to close the pressure loop. 

12 



G. Gains and Scaling 

1. Wing/Gear Force (F ). - 
wg 

The sensitivity of the accelerometer is 

0.002 v/g. This signal is amplified by a factor of 1500 to product a sensi- 

tivity of 3 V/g or 1.102 x 10 -5 
V/N (4.902 x 1O-5 V/lb). 

2. Limit Force Command (FI,Ci - To make the limit force command 

scaling consistent with the wing/gear force, its scaling is also 1.102 x 10 -5 

V/N (4.902 x 10 -5 V/lb). Therefore, one (1) newton of FLC produces one (1) 

newton of F 
wg’ 

3. Wing/Gear Velocity (V ). - The scale factor of V was chosen 
wg wg 

to be 3. 937 V/m/set (0. 1 V/in/set). As indicated in (1) above, the scale 

factor of the wing/gear acceleration is 3 V/g or 0. 3060 V/m/sec2(0. 007772 

Vlin/sec2). Therefore, the gain of the integrator must be 3. 937/O. 3060 = 

12.86 VlseclV. 

4. Sink Rate (Vs).- To make the sink rate scale factor consistent 

with that of V 
wz’ 

its scale factor is also 3.937 V/m/set (0.1 V/in/set). If 

an aircraft mounted sink rate sensor is used its scale factor must be modified 

by the controller to make it consistent with that of the internally generated Vs. 

As indicated in Table I, the scale factor of the sensor is 0.1312 V/m/set 

(0.04 V/ft/sec). Its signal must therefore be amplified by a factor of 

3. 937/O. 1312 = 30. 

5. Force Loop Gain. - To meet the dynamic requirements of the system 

the “dry-loop” gain of the force loop was chosen to be 0.001937 mA of servo- 

valve current per newton of F wg (0.008615 mA/lb). Therefore, the forward 

loop gain must be 0.001937/l. 102 x 10m5 = 175.7 mA of servovalve current 

per volt of force error. 

6. Strut Position (Xs). - As indicated in Table I, the sensitivity of 

the strut position sensor is 19. 69 Vrms/m (0. 5 Vrms/in). Since this is a 

modulated carrier signal it must be demodulated. The gain of the demodulator 

is 0. 5 V dc/Vrms and the resulting scale factor of Xs is then 9. 85 V/m 

(0.25 V/in). 
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7. Strut Position Command (Xc). - To make the strut position com- 

mand consistent with the strut position its scale factor is also 9. 85 V/m 

(0. 25 V/in). Therefore one (1) meter of position command produces one (1) 

meter of strut position. 

8. Strut Position Loop Gain. - The position loop is required to be 

effective only under near static conditions and its gain is therefore made quite 

low. Analysis has indicated that the “dry-loop” gain should be 1. 697 mA of 

servovalve current per meter of strut position error (0.0431 mA/in). As 

indicated above in paragraph 5, the forward loop gain is 175.7 mA/v and as 

indicated in paragraphs 6 and 7 the scale factor of the strut position error is 

9.85 V/m. Therefore the strut position error must be multiplied by 1. 6971 

175.7 x 9.85 = 9.81 x 10 -4 . 

9. Comparison of Kinetic Energy (KE) and Strut Work Potential (PE). - 

Work potential is given by F wg (x - X s) where X, is the maximum com- m 
pression of the strut. The multiplication is achieved by an analog multiplier 

with a gain of 0. 1. As indicated in paragraph 1, the scale factor of .F is 

1.102 x 10 -5 V/N (4. 902 x 10 -5 wg 
V/lb); and as indicated in paragraph 6, the 

scale factor of (Xm - Xs) is 9. 85 V/m (0.25 V/in). Therefore, the scale 

factor of PE is (1. 102 x 10w5) (9. 85) (0. 1) = 1.085 x 10 -5 V/Nm (1.226 x 10 -6 

V/in-lb). 

Kinetic energy is given by: 

+ w 
S 

- Vwg12 

The mass of the aircraft is 2.776 x lo4 N sec2/m (158.5 lb sec2/in). 

Therefore 0.0254 m/set (1 in/set) of Vs - V produces 8.954 N-m 

(79.25 in-lb) of KE. (Vs - Vwg12 is produced by z:analog multiplier with a 

gain of 0.1 and as indicated in paragraphs 3 and 4 the scale factor of Vs minus 

V 
wg 

= 3. 937 V/m/set. Therefore, for Vs - V = 0.0254 m/set ( 1 in/set) 

the voltage is [(3. 937) (0.0254j 2(0. 1) = O.:& V. The scale factor for 
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KE is then 0.00118. 954 = 1.117 x 10 -4 V/N-m (1.262 x 10B5 V/in-lb. To 

compare this with PE it must be multiplied by: 

1.085 x 10 -5 
= 

1.117 10 
-4 0.09715 

x 

10. Comparison of Total Velocity (V sz-wg) and Transition Velocity 

(v,). - Transition velocity is given by(FL$2/2MR where FLI is FLC during 

impact, and from paragraph 2 its scale factor is 1.102 x 10m5 V/N (4.902 x 

10-5 V/lb), R is 4.448 x 10B5 N/set (100 000 lb/set) and M = 2. 776 x 104N 

sec2/m (158. 5 lb sec2/in. Then, 4.448 N (1 lb) of FLI produces. 

(4. 448)2 -10 = 

2(2.776 x 104) (4. 448 x 105, 
8.012 x 10 mlsec (3.155 x 10-8in/sec) 

(FLI)2is. produced by an analog multiplier with a gain of 0.1. Then 

4.448 N (1 lb) of FLI produces: 

(1. 102 x 10-5) (4. 448) 2 (0. 1) = 2. 403 x 10-l’ V 

The scale factor of Vt is then: 

2.403 x 10 -10 
= 0. 2999 V/m/set (0.00716 V/in/set) 

8.012 x 10-l’ 

From paragraphs 3 and 4 the scale factor for Vs - V is 3.937 Vlmlsec 

(.O. 1 Vlinlsec). To compare it to Vt, it must be multiplies by 0.2999/3.937 

= 0.07616. 
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VI. ANALYSIS 

Land and roll cases were run using the ACOLAG program supplied by NASA. 

The variables used for the landing gear model are shown in Figure 3 and the 

model is described in detail in Reference 1. This model was modified to include 

the pressure drop effect of the relatively small lines which connect the gear to 

the pressure source. 

Figure 4 compares the results for the active gear, with and without line 

effects, with those for the passive gear, for a sink rate of 0.914 m/set (3.00 ft/sec). 

As can be seen from the figure, the degradation due to the line effect is very 

small. 

VII. LANDING GEAR MODIFICATION 

In order to make the gear amendable to the active control concept the 

following changes were made to the existing gear (refer to Figures 5 and 6). 

The landing gear was internally redesigned so that hydraulic fluid could be 

removed and replaced on demand by the externally located servovalve. This was 

accomplished by designing a new orifice support tube which added six hydraulic 

tubes to pick up shock strut hydraulic fluid below the landing gear orifice and 

transmit it through the top of the landing gear shock strut to an external hydraulic 

circuit. The hydraulic circuit consists of a servovalve, four (4) accumulators, 

a relief valve and a solenoid-operated shut-off valve. The accumulators supply 

fluid to the servovalve at times of high flow demand. 

The relief valve was added to protect the internal parts of the landing gear 

from being over-pressurized. Per the aircraft manufacturer, the internal pres- 

sure of the landing gear was designed for 1.517 x 104/2 kPa (2200 psi) and there- 

fore the relief valve would operate at this pressure. 

The solenoid-operated shut-off valves isolate the struts from the servo- 

valves and the aircraft hydraulic system as shown in Figure 6. These valves 
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will be closed during gear retraction after takeoff and when power is shut off 

.: for parking on the ramp. 

TOTAL 
UPPER MASS = MU = M + MC 

WING/GEAR INTERFACE 

-M (AIRPLANE MASS) 

M, (CYLINDER MASS) 

INPUTS 

CONTROLLER 

ORlFlCE PLATE ’ 

SERVOVALVE 
--me 

(LOWER MASS) ML 

GROUND 

1&J 

+ Xg 

Figure 3. Illustration of variables used in nonlinear 
simulation of simplified vertical drop case for a 
single main gear. 
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1 - Passive Gear 
2 - Active Gear, Accumulator and Line Effects Neglected 
3 - Active Gear, Accumulator and Line Effects Included 
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Figure 4. Wing/ Gear Interface Force-Time Histories 
Sink R.ate’ 0.914 m/set (3 ft/sec), Random Runway 
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The detailed stress analysis of the hydromechanical components is presented 

as Appendix A. The results of these analyses are summarized in Table III. 

VIII. ELECTR.ONICS 
I: ’ 

A brief summary of the electronic functions is presented in chart form in 

Table IV. The complete electronic design is contained in the following drawings: 

88000050 Controller Assembly 

88000050-200, R.ev. A Schematic (2 sheets) 

88000582, Rev. A P. C. Board Assembly 
(Channel 1 & 2) 

88000583 P. C. Board Assembly 
(Inter Channel Circuit) 

88000583-400 P. C. Board Fabrication 

88000584 Chassis 

88000585 Gasket 

88000586 Cover 

88000587 Cover Assembly 

These drawings are available at Hydraulic Research, Valencia, CA 91355. 

A detailed description of the electronic design follows. 

IX. DETAILED DESCRIPTION OF THE ELECTRONIC CIR.CUITRY 

Unless otherwise indicated, the designators refer to the channel 1 and 

channel 2 boards (Al and A2). Where the designator refers to the interchannel 

board or a panel, the number of the board or panel follows the designator in 

parantheses. 
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Part 
No. Description 

:1004818 Support Assy., 
Orifice Plate Mlg 

:1004829- 101 
- i02 
- 103 
- 104 
- 105 
- 106 
- 107 
- 108 

:1004819- 001 

Tube Assys. 2 l-6-9 CRES 

Adapter 15-5 Ph CRES 

10048 19- 00 7 Servovalve 606 l-T6 
Brackets Alum. Sheet 

10048 19- 003 Accumulator 
- 004 Clamps 2i 
- 006 Brackets 

10048 19-003 Accumulator 
-004 Clamps & 
-006 Brackets 

TABLE III 
MINIMUM MARGINS OF SAFETY 

-Material 

321 CRES 

7075-T7351 
Alum. bar 

7075-T7351 
Alum. bar 

Loading 
Condition 

To determine 
max external 
& internal 
pressure assy. 
can withstand 
Pressure(- 10 1) 
& bending(- 104) 
Pressure(- 102) 

(- 103) 
(- 107) 
(- 108) 

Pressure(-105) 
Pressure(- 106) 
Pressure 
Pressure & 
Moment (Bolt) 

(Lug) 
Wt. & G loads 
(Tie-down bolts 
Wt. & G loads 
(Bracket bolts) 
Wt. & G loads 

(-007) 
(-008) 

Wt. & G loads 
(thru bolt) 
Wt. & G loads 

(-003) 
tit. & G loads 

(-004) 
Wt. & G loads 

(bolts) 
Wt. & G loads 
-oo 

Nt. & G loads 0.49 39-41 

Min. Mh 
M. S. M. S. 

Yield u1t. 

Max. ext. 
pressure 
Max. int. 
pressure 

1.09 

2.26 

2.15 
2.12 
9. 32 

Large 

Large 

1. 57(Tens. 
.arge(Shea. 
Large 

0.39 

0.62 

Large 

746(Shear) 

1921 psi 

2323 psi 

0.98 

1.21 

1. 14 
1. 11 
5. 62 

1. 51 
1.21 
Large 

Large 

Large 

Per 
Attachmt. 

Pages 

6- 10 

11-14 

11-12 

15-16 
16- 17 
19 

20 
20 
23 

27 

28 
28 
32 

33-34 

34-35 

35-37 

38 

22 



It 
- 

TABLE IV 
I i 
1: ELECTRONIC FUNCTIONS \ I 

Mode Determination 

Landing Mode 

Pre-Touchdown 

Touchdown 

Sink Rate (Vs) 

Wing/Gear Velocity (V 
wg 

) 

Kinetic Energy 

Potential Energy 

Comparison of Kinetic 
and Potential Energy 

FL1 Held Constant 
During Impact 

Servoloop Enabled 

Transition Velocity (V,) 

Determination of Transition 

Decay of FLC During Transition 

Comparison of Fwg and F,m 

FLC Maintained at zero and servoloop 
Disabled When / Fwg/ (Fmin 

FLC = Fmin Sign Fwg 
When /Fwg/ > F,n-, 

Take-Off Mode 

F LC =O 
Servoloop Enabled 

Control Law Implementation 

Electronic Mechanization 

Flip-flop (U36A) is high or low as a function 
of scissors switch state 

Analog switch U27A is closed to complete the 
pressure loop to maintain the strut at the design 
charging pressure. 

Flip-flop (U43A) is set when the wheel 
generator exceeds a threshold level 

Pre-set or derived from a sink rate sensor 

Wing/gear acceleration is integrated by U3D 

(VS 
- VW,) is squared (Ull) 

F is multiplied by (Xm - Xs) (U19) 

CZZparator (U13C) 

Sample and hold amplifier (U17) is switched 
to a hold state by U25A 

Analog switch (U27A) opens the pressure loop 
and closes the force loop. 

FL1 is squared by U18 

(V, - V,g) compared to Vt by comparator (U13A) 

Ramp is generated by UlOD and U6F. Rate 
is determined by R45 and Cl3 

Comparator (~32C) 

Analog switches (U24A and U34A) 

Sample and hold amplifier (Ul7) 

Analog Switch (U24) 

Passive networks associated with 
U26A, U26B, U26C & U26D 
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A. Basic Loop Function 

The accelerometer signal is amplified by differential amplifiers UlA, 

UlB and U2A. It is then applied through the panel NOR.lJ!LAL/TEST switch, S6 

(A4), to amplifier U3A for inversion, permitting comparators U5A and U5B 

to determine that the level of the accelerometer signal is within limits of 

*3 g’s. Otherwise a failure signal is applied to NOR. gate U39 and the system 

reverts to a passive configuration. The accelerometer is also applied through 

the internal NORMAL/TEST switch, U6A to integrator U3B which produces the 

wing /gear velocity s ignal. 

Under active control the accelerometer signal is subtracted from the limit 

force command signal in amplifier U2OC to produce the force error signal, 

which is applied to the compensation circuits of amplifiers U26A, U26B and U26C. 

The compensated signal is applied through switch U27A to amplifier U28A and 

then a limiter which is composed of diodes CR12, CR13, CR14 and CR15. 

The output of the limiter is applied to amplifier U28C, the output of which feeds 

the constant current amplifier U29 which, in turn, drives the servovalve. If 

a failure is detected then switch U34B removes excitation from U29 and therefore 

prevents the servovalve from being driven. 

B. Take Off Mode 

Several functions begin when power is turned on, while the aircraft is at 

rest and are listed below. In the description of these functions, where sink 

rate (Vs) is involved, the sink rate is an input value rather than one supplied 

by a sink rate sensor. 

(1) The scissors switches are closed indicating that the struts are 

partially compressed. 

(2) The “power-on” transient provides RESET of all circuit flip-flops 
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by means of Cl (A4), R.2 (A4), UlA (A4, and UlB (A41 and also energizes the 

isolation solenoid valves to expose the fluid in the landing gear shock strut 

pistons to the servovalves and the aircraft hydraulic system. 

(3) The tachometer output is low. 

(4) The strut position voltage is greater than 0.2V as determined by 

comparator U41B, indicating that the strut is partially compressed. 

(5) Analog switch U6A is in the NORMAL mode which inputs the F 
w 

signal into U3B which is not integrating, making the V - wg 
signal near zero, 

since capacitor Cl is short-circuited by switch U6B. 

(6) The kinetic energy calculation (Vs - V 
wg 

I2 is operative at a max- 

imum high level since V is near zero. 
w 

The input sink rate voltage, V,, 

is applied to multiplier Ull via analog switch U12A, while V 
w 

is applied from 

U3B via inverting amplifier U7A. 

(7) The potential energy is calculated by U19, performing the function 

(X m - Xs) F 
wg’ 

This value is smaller than (Vs - Vwgj2 so that K. E. >P. E. 

and IMPACT flip-flop is not set to IMPACT. 

(8) The sample/hold amplifier U17 is in the SAMPLE mode and F 
w 

is near zero. The level of F 
w 

is processed by the sample/hold amplifier 

and supplied to the various circuit points for calculation, including the input 

to U26A via U6A, U34A and U2OC to close the force loop. 

(9) The output of the sample/hold amplifier is applied to TJ18 for cal- 

culation of FLC , 2 (which is F 2 at this time), and near zero. 

(10) For a preset sink rzt the values of FLC2 at the output of SAMPLE/ 

HOLD amplifier, U17 and V 
~!ziT 

from U3B and U7A are small in comparison to 

the input sink rate voltage and therefore U13A does not set TRANSITION mode 

flip-flop U 14A. 

(11) The strut pressure amplifiers, U2B, U2D, and U2C, are operative 

but the output voltage is not introduced by U27A to the servoloop since gate 

U25B has high level inputs from IMPACT flip-flop U14B and AIR.BORNE gate 

inverter U36A. That is, U27A is switched to the SERVO mode since the status 

is not AIRBORNE and lMPACT was not experienced. 
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(12) Analog switch U6B is not energized, leaving the switch closed 

around integrating capacitor Cl in amplifier U3B, making V near zero. 
w 

(13) AIRBOR.NE flip-flop U5A (A4) is in the RESET state and the TAKE 

OFF lamp is energized. 

(14) The force loop is closed. Analog switches U24.A and U34A are 

closed so that FLC=O and Fwg is fed back to the servo loop. 

(15) The demodulated strut position signal is applied through U16A, the 

normal test switch, U12B, U20D, and U24B to U26A to close the position loop. 

(16) In the passive test mode, the eight (8) input NOR gate, U39 has 

low-level inputs indicating the following: 

F 
wg 

is less than f 3 g’s (the output from U5A and U5B is low) 

Synchro has 400 Hz excitation, evidenced by a low output from 

excitation comparator U13B as controlled by amplifier U16C and 

rectifier amplifier U16~ 

Magnitude of servovalve spool feedback is less than 2 volts as 

determined by feedback comparators U38A and U38B when differ- 

ential signals from the demodulator are applied to them. The spool 

feedback is sensed by the LVDT excited by oscillator U32A and 

buffer amplifier U33. 

Current is flowing in the coil of servovalve as detected by amplifier 

U35B detector U35D and amplifier U3lD. A low level input to NOR 

gate U39 is evidence of a satisfactory current level. inputs at pins 

2, 5, 11 and 12 of U39 must be low to prevent failure of the test. 

The remaining inputs are not used at this time. 

C. Aircraft Take Off 

Several circuit changes accompany aircraft take-off as follows: 

(1) The tachometer voltage increases with the ground speed of the 

craft and returns to zero as the wheels spin down after lift-off. 
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(2) The scissors switches change from closed to open as the aircraft 

takes off. 

(3) The landing gear struts become fully extended upon take-off and the 

output voltage from position amplifiers UlC, U16B, and U16A nears zero. 

(4) When the wheels spin down to near zero, the conditions in 1, 2, 

and 3 above are used to establish an AIRBORNE signal. 

(5) When both channels have developed an AIRBORNE signal, U5A, 

AIRBORNE flip-flop (A41 is set to the AIR.BORNE state and the LANDING MODE 

lamp is illuminated. The aircraft can now land under active control. If the 

LANDING MODE is not desired the pilot can remove power from the system 

which closes the solenoid valves and isolates the struts from the servovalves 

and the aircraft hydraulic system. 

D. Flight 

The circuits continue to function during flight as long as power is applied. 

If the TEST switch is closed the passive inputs of U39, pins 2,5,11, and 12 will 

be augmented by the following: 

(1) The strut is tested for extension by comparator U41B. If the strut 

position voltage is l.ess than 0.2 V, the #9 input to U3 9 will remain low and no 

failure will be indicated. This test can be conducted only between AIRBORNE 

and TOUCHDOWN. 

(2) A R.ESET signal is applied to all of the SET-RESET flip-flops 

following the TEST interval. The AIR.BORNE flip-flop U5A (interchannel 

schematic) immediately returns to the SET state since the inputs remain high 

during flight. 
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E. Pre-Touchdown 

The servo loop is switched to a pressure control configuration by STRUT 

PR.ESSURE analog switch U27A which is activated by gate U25B. The gate is 

enabled after AIRBORNE flip-flop U5A (A4) is set and prior to IMPACT 

flip-flop action. In this configuration the servo loop maintains the strut pres- 

sure at the pre-touchdown bias (charging) level. The solenoid valves are 

energized to permit control by the servovalves. 

F. Landing 

This procedure begins with TOUCHDOWN and continues through ROLLOUT. 

The controller accomplishes the following: 

(1) The signal for TOUCHDOWN is derived from the tachometer signal 

when it exceeds the input threshold of U44. TOUCHDOWN flip-flop U43A is 

SET to register the event. 

(2) Integrator U3B begins to integrate the F 
w 

signal from accelerometer 

amplifiers UlA, UlB, and U2A. Gates UlOA and U9A and amplifier U8A 

provide a high-level signal to U6B to remove the short from integrating cap- 

acitor Cl. 

(3) Values of F 
wg 

are integrated by U3B and applied to Ull via U7A 

as V 
w 

for calculation of kinetic energy (Vs - VwgJ2. 

(4) The F 
w 

signal is applied to U19 along with the strut position 

signal (Xm - Xs) from U16A for calculation of potential energy, (Xm - Xs) 

F 
w ’ 

(5) The output of comparator U13C goes high when PE 2 KE and SETS 

U14B IMPACT flip-fl6p to the IMPACT state. At this point, sample/hold ampli- 

fier U17 is switched to the HOLD state by the IMPACT state entering U25A. 

(6) At the IMPACT state, the servo loop is switched from the pressure 

loop to the force loop by analog switch U27A and the loop acts to maintain F 
w 
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by U24A closing the shorting switch across Cl. This is accomplished by U6B 

via UlOA. The force loop compares F 
w 

to the constant value of FLC provided 

by sample/ hold amplifier U17 and a signal is applied to the servovalve to 
c 
P maintain F 
% 

equal to FLC. 

i (7) wg 3. Amplifier U18 squares the now constant value of FLC and applies 

the output to comparator U13A to determine when (FLCJ2 = (Vs - 
vw) which 

SETS flip-flop U14A TR.ANSITION flip-flop to the TRANSITION state. 

(8) The TRANSITION state is also used to enable UlOD and U8F to 

develop a RAMP gate for U17 where the level of FLC is reduced at the rate of 

445 kN/sec (100 klb/sec) or 4.902 V/set, by the discharge of R46 and C6. 

(9) The servo loop controls F 
wg 

to the FLC ramp reference until F 
w&T 

reaches F mh. At this point the F 
wz 

signal is less than -96 mV and com- 

parator U32C output goes positive. Since U14A is now SET to the TRANSITION 

state, UlOB is enabled and ROLLOUT flip-flop U43B is SET to provide the ROLL- 

OUT interval. 

(10) When ROLLOUT begins, the ramp gate to U17 is shut-off by UlOD 

and U8F. The output of camparator U41C remains high so that UlOC is at 

a high level, permitting analog switches U24A and U34A to operate, making 

the servo loop reference FLC = 0 and disconnecting F 
wg 

from the servo loop. 

This action leaves the servo loop connected as a position loop without a force 

signal feedback. 

(11) The sample/hold amplifier U17 remains in the hold state even though 

the ramp gate is terminated and the calculations of force parameters are no 

longer needed. 

(12) The output Fwg continues from +Fmin through zero and beyond 

-Fmin where comparator U41C shifts to the low logic level causing sample/ 

hold amplifier U17 to perform a short sample of F at near -F min and hold 
wg 

this value for reference to the servo force loop which has again become active 

as F F 
w 

is greater than min’ The servo loop now maintains F 
w 

equal to 

FLC at a level of Fmin during this interval. 
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(13) A return of Fwg to less than F min will cause the servo loop to 

revert to the position loop configuration and analog switches U24A and U34A 

make FLC 
= 0. 

(14) Any further excursion of Fwg beyond *Fmin will cause the sample/ 

hold amplifier to sample, (as driven by U25A), and establish a servo loop refer- 

ence of FLC = Fmin. The force loop will then be closed to maintain F at 
wg 

F min’ 
(15) The last portions of R.OLLOUT will find Fwg less than F min and 

the servo loop controlling position with FLC = 0 and F = 0 as a result of 
w 

analog switches U24A and U34A as driven by U9D. 

(16) After ROLLOUT begins Fwg can no longer be a signal to the servo 

loop unless F 
-w 

exceeds F min. Otherwise, the system has position loop 

activity only. 

To take off again with the force loop closed the controller must be RESET 

by turning the power OFF and then ON again. 

G. Control (Loop Compensation) Laws 

The compensation consists of a notch network and two lead-lag networks. 

The notch network is implemented by means of the passive components associated 

with U26A. One lead-lag network is implemented by means of the passive com- 

ponents associated with U26B while the other lead-lag network is implemented 

by means of the passive components associated with U26C. 

H. Description of Controller Tests 

1. Continuous Tests. - Several tests are made continuously while the controllers 

are powered. These are as follows: 

(1) Fwg is less than f 3 g’s 

(2) Synchro has 400 Hz excitation. 
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(3) Magnitude of servovalve spool signal is less than 2 V, (LVDT test). 
,: : (4) Current is present in the EHSV coil. 

2. Pilot Initiated Tests. - Tests which can be made upon Push-to-Test command .-- 
only are: 

(1) Strut partially contracted when not airborne 

(2) Strut position extended when airborne. 

(3) Dynamic Test. 

All signals are applied to U39 for composition of the failure circuits into 

a single command source, as illustrated in Figure 7. 

3. Detailed Description of test inputs for dynamic test. - 

The test inputs and relative timing are shown in Figure 8 . This test 

is performed by introducing a voltage representing 0. 1 g (-0. 3 volts), a 

voltage representing Vs (10 V) and a voltage representing Xm - Xs (0.5 VI 

into the system and establishing a test based upon this input. The following 

functions are performed. 

(1) U6A analog switch is set to TEST position and -0. 3 V is intro- 

duced to integrator U3B as a F 
wg 

signal. 

(2) U6B is enabled to open the short around Cl and F 
wg 

is integrated 

by U3B. 

(3) Ull performs the calculation for kinetic energy, (Vs - V 12. 
wg 

(4) Analog switch U12A is switched to a reference value for Vs of 

+ 10. 0 volts for the calculation of kinetic energy. 

(5) U12B analog switch is switched from the strut position signal to 

a reference of 0.5 V representing (Xm - Xs). 
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A+B+C+D+E+F+G 

A = Dynamic Test (Pin 4) 
B = Fwg Level (Pin 5) 
c = 400 Hz excitation to position synchro (Pin 2) 
D = Servovalve spool signal (Pin 11) 

E & F = Strut position (Pins 9 & 10) 
G = EHSV Current (Pin 12) 

Figure 7. Test NOR Gate 

For H to be high (non-failure); A, B, C, D, E, F, G must all be low. 
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A. 1 High when 1.331 <ES 1.089 LVDT output 

I 

I I 

I 

1 0.02 set * 10% after TRANSITION 
18 ms 22 ms 
20 ms 1 A = Pin 13 of U22A 

B= Pin 12 of U22A 
JMPACT SIGNAL C = kn9ofU22B 

D= Pin 6 of U22C 
E = Pin 4 of U23B 

TEST = Pin 5 of U23B 
AIRBORNE = Pin 6 of U23B 

V= Pin 4 of u3l.A 
4.7 set 

E. I PILOTS TEST INTERVAL I 

0:K Test 

!4-4.9 set- 

C8 

Reset 

V 

Sample 

I Test 
Set 

V Low for 
Test 0:K 

I S Q", 
U30A 

Figure 8. Test Input and Relative Timing 
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(6) U19 calculates the potential energy (X - Xs) F 
wg 

using (Xm -Xs) 

= 0.5 v and F = -0.3 v. 
wg 

(7) U13C compares KE to PE. Using the values of F 
wg 

and (X 
meXs) 

given, the time for U13C to reach IMPACT is 1.625 seconds. Flip-flop U14B 

is SET to indicate IMPACT when PE 2 KE. 

(8) The high levels of U45B and U14B enable U25A which sets 

sample/hold amplifier U17 to hold the value of F = -0. 3 volts for calculation 

by U18 to develop (FLd2. 
wg 

(9) U13A compares Vs (+lOV) with (FL22 + Vwg from U7A and U18. 

U14A is SET when Vt is reached and the TRANSITION state is established. 

Sample/hold U17 is switched to the RAMP mode by the output of U8F. 

(10) The time from IMPACT to TRANSITION is 2. 285 set for the test 

voltages applied. 

(11) The value of F 
wg 

= -0. 3 V is equivalent to more than Fmin. 

Therefore, the servo loop input is FLc (rather than zero) since U24A is not 

switched. 

(12) U34A is switched so that F 
wg 

to the servo loop is zero. 

(13) IMPACT flip-flop U14B has been SET so analog switch U27A is 

closed and the servo loop is closed as when landing and F 
wg 

is greater than 

F 
min’ 

(14) The servo loop has an input equivalent to FLc= -0.3 V which 

begins to reduce at the rate of 4.902 V/set, (445 kN/sec) (100 000 lb/set), 

from the beginning of the TRANSITION period. The rate is determined by R46 

and C6 as in normal operation. 

(15) The servo loop operates with F 
wg 

= 0 and the only feedback signal 

is from U32B representing the demodulated feedback from the LVDT pickup. 

(16) The closed loop should present an output voltage at U32B of 1. 21 V 

representing a displacement of 3. 07 x 10 
-3 m (0. 121 in). of the spool LVDT. 

(17) The circuit in Figure 9 is designed to perform the test for 

dynamic performance of the system when the craft is airborne. 
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The coincidence of the LVDT voltage and the reference should occur a time 

of 0. 02 set 2 10% after the beginning of the TRANSITION mode. 

Prior to the TRANSITION gate E. = 0 since Ein = -V diode and il = i2 

(the diodes are identical) E. is expressed as 15 (l- eBt’rc) where r = R59+ R60 

and c = C7. When TRANSITION goes positive capacitor C begins to charge at 

l/C 
/ 

idt but since Eo((15 V then E. g it/C. 

E. reaches 1.21 V at about 1.21/ 15 = 870 of full charge so that the slope 

is reasonably linear at this point. 

The charge is to reach 1.21 V in 0.02 set, and C7=4.7 mfd, 5%, i = 284 mA. 

Let r = 15V/O. 3mA = 50K Ohms l%, R60=10K Pot, 
choose R61=25K, 1% 

Figu 

vC 

re 9. 

= 60.43 t volts or 1. 2086 volt in 0. 02 sec. 

il 
R59 

Airborne Test Circuit 

0 TRANSITION 

(18) A failure can be indicated only during the TEST period which is 4.7 

seconds in duration. This test is positive in nature since an OK test result 

must be achieved during the 4. 7-second test or a failure is annunciated at the 

end of the test period. In effect, the flip-flop is RESET by the leading edge 

of the TEST interval. A SET toggle must be received from the OK test 

circuits during the 4. 7 seconds or the still high state of the a output will 

report the failure, since the sample pulse completes the AND for a high level 

output. 
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In Figure 10 , time and voltage are linear for a linear sawtooth so that the 

same reference can be used for the time gate and voltage limits of the test. 

13.67K 

I 1. 331 Volts 

240n 0.242 Test Limits 

I’ 1.089 Volts 

1lOOR 
0.242 

*t= 60.43 4ms = f 10% (0.02 set) 

1.33lV<E <l. 089V 

47K 

+ 

560 
Kc omparison 

Gate 

I I 

I I 
18ms 22ms 

Figure 10. Test Circuit 

A 

B - 
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(19) A successful OK test pulse must be developed in the circuits of 

paragraph (17) and can occur only after TRANSITION and IMPACT high levels 

are established. An intersect of the LVDT voltage must occur with 1.21 V 

f 10% at a time of 0.02 set f 10% or an OK pulse cannot be generated. 

(20) A successful dynamic test results in a TEST IN PROGRESS in- 

dication without a PASSIVE FAILURE indication following. At the conclusion 

of the test the TEST IN PROGRESS lamp will be extinguished. 

(21) The AIRBOR.NE high level gate is AND’ed with the dynamic TEST 

gate to permit this test only during flight. 

(22) A failure in either strut channel causes a signal to be applied through 

UlB, U8D, Ql and Q2 of both channels to the solenoid valves of both channels 

thereby isolating the struts from the pressure source and causing reversion to 

a passive gear status. 

X. SYSTEM SPECIFICATION 

A complete system specification for a flightworthy electrohydraulic active 

control landing gear system for a supersonic airplane has been included as 

Appendix B. 

XI. CONCLUDING REMARKS 

The active control landing gear presented in this report is designed to 

be completely flightworthy and to meet all applicable military specifications. 

It contains the ability to detect failures and upon such failure to cause reversion 

to a passive configuration. 
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Two potential problems which have not been addressed are: 

A. The effect of severe vibration at takeoff. 

B. The possibility that on takeoff from an extremely uneven runway 

the strut may be depleted of fluid, causing the gas to fill the hydraulic chamber. 

Under these conditions the static design pressure will be lost. 

XII. APPENDICES 

The appendices are as follows: 

A Stress Analysis 

B System Specificat ion 

38 



APPENDIX A 

STRESS ANALYSIS 
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APPENDIX A 

STRESS ANALYSIS 

The following is the analysis of the Active Control Landing Gear, 
Dwg. No. 41004640. In all cases a conservative approach was taken. 
In the case of the Orifice Plate Support Assy, under every condition 
imaginable, the AP (internal & external) was very low; therefore, the 
AP which the structure was capable of withstanding was calculated and 
is summarized in the analysis. Load analysis of attachment hardware 
is also included. 
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PART NO. DESCRIPTION MATERIAL 

41004818 Support Assy, 
orifice plate 
MLG. 

321 CRES 

41004829-101 
-102 
-103 
-104 
-105 
-106 
-107 
-108 

41004819-001 Adapter 15-5 PH CRES 

41004819-007 Servo valve 606 l-T6 
-008 brackets sheet 

41004819-003 Accumulator 
-004 clamps f 
-006 brackets 

Tube assys 21-6-9 CRES 

Active Control Landing Gear 

Table of Minimum Margins of Safety 

alum 

7075-T7 351 

LOADING MIN. M.S. MIN. M..S. 
CONDITION YIELD ULT 

To determine 
max. external 
& internal 
pressure assy 
can withstand 

Max. ext. 
pressure = 

Max. int. 
pressure = 

1.324x104KPa 
(1921 psi) 

1.602x104KPa 
(2323 psi) 

Pressure & 
bending (-101, 
-104) 
pressure 
(-102, -103, 
-107, -108) 
pressure 
(-105) 
pressure 
(-106) 

1.09 .98 54-57 

2.26 

2.15 

2.12 

9.32 

1.21 54-56 

1.14 58-59 

Pressure 
pressure Ei 
moment (bolt) 

(lug) 

1.11 59-6 1 

5.62 63 

---- 1.51 64 
---- 1.21 65 

Wt.& G loads: 
(tie-down 
bolts) 
(bracket 
bolts) 
(-007) 
(-008) 

Large 

Large 
1.57 (tens) 
Large (shear) 

Large 

Large 
---- 
--mm 

Wt.& G Loads: 
(thru bolt) 
(-003) 
(-004) 
(-006 bolts) 
(-006 A/C load 
reqts) 
(-106 fitting) 

Large Large 80 

0.39 --mm 81-82 

0.62 --mm 82-83 

Large s--m 83-86 

2782 (tension) Per 86-87 

746 (shear) Attachment 86-87 

.49 --es 88-90 

PAGES 

49-53 

49-53 

68-69 

69-75 
75 
75 



21-6-9 Tubing per AMS5561 

41004640 Landing Gear - Active Control 

Material Properties 

Tube Assys - 41004829 - CRES 

9.79xlO'KPa 
F = 

TU 
(min) 

(142 ksi) 

8.273xlO'KPa 
F = 

T 
(120 ksi) 

(min) 
Y 

.87* 

.91* 

E (elongation) - 20% (min) 

1.792x108KPa 
E = 

(26~10~ psi) 

P = .286 

7.582x107KPa 
G = 

(11x106 psi) 

.96* 

I 

MIL-HDBK-5C, 
table 2.7.1.0 (b) 

.96* 

!J = . 3 

Adapter - 41004819-001 - 15-5PH CRES per AMS5659 

1.069x106KPa 
F TU = (min) .92* 

(155 ksi) 

9.986x105KPa 
F Ty = .92* 

(145 ksi) 

9.858x105Kpa 
F cy = . go* 

(143 ksi) 

668.7KPa 
F su = (97 ksi) 

l.965x108KPa 
E = 

(28.5~10~ psi) 
. 98* 

7.721x107Kpa 
G = 

(11.2~10~ psi) 
. 98* 

lJ = .27 

P = . 283 

42 

MIL-HDBK-SC, 
table 2.6.7.0 (c) 

*39b°K (250°F) temp. factors 



41004640 Landing Gear - Active Control 

Material Properties (cant) 
Manifold - 41004819-002; Clamps - 41004819-003, 0004, ~005; 
Br.acket .- 

-- 
41004819-006 (7075-T7351 AL ALY per QQ-A-250/12 

4.619x105KPa 
F = 

TU (67 ksi) 
(min) .82* 

3.93Oxlo'KPa 
F Ty = (min) .85* 

(57 ksi) 

3.861xlO'KPa 

FCY = (min) .87* 
(56 ksi) 

2.6020xlO'KPa 
F su = (min) .91* 

(38 ksi) 

7.101x106KPa 

E = 
(10.3x106 psi) 

.92* 

2.689x107KPa 
G = 

(3.9x106 psi) 
.92* 

u = . 33 

P = . 101 

MIL-HDBK-5C, 
table 3.7.3.0 (b2) 

Brackets - 41004819-007, -008 - 6061-T6 AL sheet per QQ-A-250/11 

2.896x105KPa 
F = 

TU 
(min) .86* 

(42 ksi) 

2.413x105KPa 
F Ty = (min) .88* 

(35 ksi) 

2.413Xlo5Kpa 
FC = (min) 

Y (35 ksi) 

1.861xlO'KPa 
F su = (min) 

(27 ksi) 

,MIL-HDBK-5C, 
table 3.6.1.0 (b) 

*394'K (25O'F) temp. factors 
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41004640 Landins Gear - Active Control 

Material Properties (cant) 

Brackets - 41004819-007, -008 (cant) 

6.825x107KPa 
E = 

(9.9x106 psi) 
.97* 

2.620x107KPa MIL-HDBK-SC, 
G = 

(3.8~10~ psi) 
.97* table 3.6.1.0 (b) 

1-I = . 33 

P = .098 

Support - 41004818-001, -002 - 321 CRES bar per QQ-S-763, cond. A 

5.171x105KPa 
F TU = 

(75 ksi) 
.87* 

F 
TY 

= 2.068xlO'KPa 
. 91* 

(30 ksi) 

E (elongation) = 40% 

y (red.area) = 50% 

1.999x~08KPa 
E = 

(29x106 psi) 

8.618x107KPa 
G = 

(12.5~10~ psi) 

IJ = .3 

P = .286 

1.861x105KPa 
F cy = 

(27 ksi) 

3.447x105KPa 
F su = 

(50 ksi) 

.96* 

.96* 

.95* 

.a4* 

MIL-HDBK-SC * 
table 2.7.1 . 0 (b) 

/ "394'K (25O’F) temp. factors 
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41004640 Landing Gear - Active Control 

Material Properties (COnt) 

Support - 41004818-003 - 

6.894x105KPa 
321CRES sheet per MIL-S-6721, camp TI 

F = (100 ksi) (max) 

TU 5.171x105KPa . 87* 

(75 ksi) (min) 

2.068x105KPa 
F = 

TY (30 ksi) 
.91* 

l.861x105KPa 

FCy = 
(27 ksi) 

.95* 

3.44i'x105KPa 
FSu= . 84* 

(50 ksi) 

1.999x108KPa 
E = 

(29x106 psi) 
.96* 

8.618x107KPa 
G = 

(12.5~10~ psi) 
. 96* 

P = .3 

P = . 286 

MIL-HDBK-SC, 
table 2.7.1.0 (b) 

Tube 41004818-004 - 321 CRES tube per MIL-T-8808, type 1 

6.894x105KPa 
F I 

TU 
(MIL-T-8808) 

(100 ksi) (max) 

5.171x105KPa 
F = 

TU (75 ksi) (min) 

2.068xlO'KPa 
F Ty = (30 ksi) (min) 

1.861x105KPa 

FCy = (27 ksi) (min) 

. 87* 

.91* 

.95* 

MIL-HDBK-SC, 
table 2.7.1.0 (b) 

*39b°K (25oOF) temp. factors 
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41004640 Landing Gear - Active Control 

Material Properties (cant) 

Tube 41004818-004 (cant) 

3.447xlO'KPa 
F =: 

sU (50 ksi) (min) 

1.9g9x108KPa 
E = 

(29x106 psi) 

8.618x107KPa 
G = 

(12.5~10~ psi) 

1J = .3 

P = . 286 

.84* 

-96" 

.96* 

MIL-HDBK-5C, 
table 2.7.1.0 (b) 

I 
*394'K (25O'F) temp. factors 

Design Criteria 
System Limit Pressure = 

(2200 psi) 
System Proof Pressure = 1.5 x limit pressure 
System Burst Pressure = 2.5 x limit pressure 

G FWD =1.5 G UP =2.1 G INBD = 1.5 

I 

Data from aircraft manufacturer 
G = 1.5 G = 5.85 GOUTBD= 1.5 (Flight Ult. 'G' Loads) 

AFT DOWN 
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41004640 - Landina Gear. Active Control 
Weights of Parts 

No. 
Req'd 

1 

1 

2 

2 

2 

4 

2 

1 

3 

1 

1 

1 

4 

1 

1 

1 

1 

1 

1 

4 

4 

Description Part Number 

Adapter (2) 

Manifold (3) 

41004819-001 

41004819-002 

Clamp (4) 

Clamp (5) 

Clamp (6) 

41004819-003 

41004819-101 

41004819-005 

Bracket (7) 41004819-006 

Bracket (8) 41004819-007 

Bracket (9) 41004819-008 

Pipe assy (10) 41004829-101 

Pipe assy (11) 41004829-102 

Pipe assy (12) 41004829-103 

Pipe assy (13) 41004829-104 

Pipe assy (14) 41004829-105 

Pipe assy (15) 41004829-106 

Pipe assy (16) 41004829-107 

Servo valve (17) 23241830 

Relief valve(l8) 5130T-16TT-2000 

Bracket (19) 41004819-009 

Valve, sol. oper. 
shutoff, R.H. (20) 
Valve, sol. oper. 
shutoff, L.H. (22) 
Accumulator (empty) 
(21) 

Plug (23) 

25200 (HRT) 

25450 (HRT) 

MS28797-7 

AN814-12 

Weight 
N (lb) 

Weight 
Per Side 

N (lb) 

19.17 
(4.311 
34.43 
(7.74) 

7.295 
(1.64) 
15.66 
(3.52) 

4.048 

t.911 
1.601 

l-36) 
. 667 

(-15) 
1.824 

(-41) 
3.603 

t-81) 
4.893 

(1.10) 
5.738 

(1.29) 
4.581 

(I.031 
2.269 
t.511 

7.072 
(1.59) 
17.75 
(3.99) 

117.9 
(26.5) 

6.005 
(1.35) 

311 
Lo71 

19.17 
(4.311 
34.43 
(7.74) 
14.59 
(3.28) 
31.31 
(7.04) 

8.095 
(1.82) 

6.405 
(1.44) 

1.334 

l.30) 
1.824 

t.411 
11.03 
(2.43) 

4.893 
(1.10) 

5.738 
(1.29) 

4.581 
(1.03) 

9.074 
(2.04) 

7.072 
(1.59) 
17.75 
(3.99) 

117.9 
(26.5) 

6.005 
(1.35) 

311 
co71 

22.24 22.24 
(5.001 (5.001 

Ill.2 444.8 
(25.0 (100.00) 

.979 3.914 
l.221 (.88) 
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41004640 - Landing Gea,r, Active Control 
Weisl 

No. 
Req'd 

1 

2 

4 

4 

2 

1 

3 

1 

12 

4 

16 

.s of Parts (cant) 

Description Part Number 

Plug (24) 

Plug (25) 

Union (26) 

Union (27) 

Tee (28) 

Check valve (29) 

Reducer (30) 

Pipe assy (31) 

Bolt (38) 

Bolt (39) 

Bolt (40) 

Bolt (41) 

Bolt (42) 

Bolt (43) 

Nut (44) 

Bolt (48) 

AN814-I6 

AN814-20 

AN815-I2 

AN815-16 

AN824-16 

2C6510 (Crissair) 

AN919-26 

41004829-108 

NAS1224Cl 

NASl228Cl 

NASI226C6 

NASl228CI32 

NASl35lC4HI2 

NASl224C32 

AN315C4R 

NASl223Cl 

iieight 
N (lb) 

I.423 
t-32) 
1.957 
t.441 
1.423 
t.32) 
2.135 
t-48) 
4.315 
l.97) 
1.112 
t.25) 
2.669 
1.60) 
5.338 

(1.20) 
0534 

(:012) 
325 

(:073) 

,:EP 
2.344 
t.527) 

0623 
(:014) 

165 
(:037) 

0311 
(1007) 

.0267 
(-006) 

Total Per Side 
(empty assy) 

Total Per Side 
1042N 
(234.27 lbs) 

(accumulators full) 

Weight 
Per Side 

N (lb) 

1.423 
l-32) 
3.914 
(.88) 
5.693 

(1.28) 
8.540 

(1.92) 
8.629 

(1.94) 
1.112 
t-25) 
8.006 

(1.80) 
5.338 

(I.201 
.667 

t-151 
1.290 
t-291 
2.980 
t.67) 
9.385 

(2.11) 
-267 

(. 06) 
.3.11 

l.07) 
.I33 

t.031 
.0445 

t.011 

830.ON 
(186.59 lbs) 
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41004640 - Landing Gear, Active Control 
41004818 - Support Assy, Orifice Plate, MLG 

49.2 8 ..8 
MIN MIN 

I I I ,41004819-001 ADAPTER 

558.8 

I 
I I I N NN 

-- 

41004818-003 

41004818-004 

8 18-002 

(B) I I 

41004818-001 

DIMENSIONS IN MM I 

Figure A-l. Orifice Plate support Assembly 49 



41004640 - Landing Gear, Active Control 

41004818 - Support Assy, Orifice Plate, MLG (cant) 

Based on the System design, the ap between chamber (A) and chamber 
(B) (see FigA-1) is always very small unless the servo valve is 
either not working or has been shut off. If this is the case, any 
tension or compression loads on the Orifice Plate Support Assy are 
very small. Therefore, it has been decided to determine the max. 
ap the assembly can withstand in either direction before yielding 
of the material (since material is 321 stainless, cond. A which has 
a yield allowable of only 40% of ultimate allowable). 

Case 1 - Compression Load in Cylinder (pressure in (B)>pressure in (A) 

Determine max. ap in (B) over (A) 
0.559M 

Length (cyl. wall & 6 tubes)=R=(22.00 in) 

r(rad. of gyr. -cyl.)=z 'dDp; = +\/(6.05)2 + (5.825)2 = 2.0996 

+l) = 10.47819 

r(rad. of gyr. y/Pi = Tiqi202 +-~,5032 = .I9959 -tube)=q 

$(tube) = 110.22334 

2 TE CJ =K - 
cr (a_) 2 

(for elastic buckling) where K (fixed gnds) = 4 

r 6 
1.919x108KPa 

E=(29x'fJ 1 L96)=(27s84xlo6 psi) 

1~~t27.84~10~) 
6.901x107Kpa 

0 =4 
cr 

(10.47819)2 
= (10,010,515 psi)(main cyl) 

~~(27.84~10~) 
6.237x105KPa 

CJ = 4 
cr 

(l10.22334J2 
= (90465 psi) (tubes) 

Based on the above (J = F cr CY 
for cyl & tubes 
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41004640 - Landing Gear, Active Control 
41004818 - Support Assy, Orifice Plate, MLG (cant) 

Case 1 - Compression Load in Cylinder (cant) 

1.768x105KPa 
F cy(main cyl)=27000(.95)= (25650 psi) 

1.i'68x105KPa 
F cy(tubes)=27000(.95)= (25650 psi) 

A(main cyl)=nDt=n 6.05 + 5.825 1 00108M2 
2 ('ogo)';I.67879 in2) 

Attubes)= 
[ 
$(.6202-. 5032) = 1 3.995x10 -4M2 

(-61917 in2) 

5 
P YIELD (main tubes)=(25650)(I.67879)=~~~~~~1~b~ 

4 
P YIELD(tubes)=(25650) (.61917)=:;~~~~1~b~ 

5 
P YIELD(total)=43061 + I5882 =:;~~~~'~,~ 

AP (Pressure (B)>Pressure (A))== I.324x104KPa 
=(I921 psi) $(6.25)2 - 

Case 2 - Tension Load in Cylinder (Pressure in (A)>Pressure in (B) 
Cvlinder Wall & Tubes 

A(main cyl)= .00108M2 

(1.67879 in2) 

A(tubes)= 3.995x10 -4M2 

t.61917 in2) 

l.882x105KPa 
F ty(main Cyl)~30000(-91)~~27300 psi) 
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41004640 - Landinq Gear, Active Control 

41004818 - Support Assy, Orifice Plate, MLG (cant) 
Case 2 - Tension Load in Cylinder (cant) 

Cvlinder Wall '& Tubes 

1.882x105KPa 
F ty(tubes)=30000(.91)= 

(27300 psi) 

5 
P YIELD (main ~yl)=(27300)(1.6789)=~~~~~~'~~~ 

4 
P YIELD(tubes)=(27300) (.61917)=:;~~~~1~b~ 

5 
P YIELD(total)=45831 + 16903=:~~~~~1~bp 

ap(Pressure (A)>Pressure (B))= 62734 1.623x104KPa 

$(5.825) 
2=(2354 psi) 

WELDS IN SHEAR (CYL. & TUBES) 

ND FLUSH 
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41004640 - Landing Gear, Active Control 

41004818 - Suooort ASSY. Orifice Plate, MLG (cant) 

Case 2 - Tension Load in CyIinder (cant) 
Cvlinder Wall t Tubes 

t =. 090 
C 

tf=. 063 min 

K(weld factor)=.85 (MIL-HDBK-5C) 

2.896x105KPa 
FS 

U 
(main ~~1)=(500001 (.84)=t42000 psi) 

2.896x105KPa 
F 

sU 
(tubes)=(50000)(.84)=~42000 psi) 

(main cyl)=?r 6.05 ; 5.825 AS 
H 1 (s7o7) ~,ogo)J.658x10 

-4#2 

(1.18690 in2) 

3.529x10 
-4M2 

AS (tubes)=6(n) 
H 

+ T (.707)(.063)=( 546gg in2) 1 . 
5 

P SHEAR (main cyl)=(42000)(.85) (1.1869)=~~~~:~1~b~ 

4 
P SHEAR(tubes)=(42000) (.85)(.54699)=~;~~~~1~b~ 

5 

P SHEAR(total.)=42372 + 19528=:~:~~~1~b~ 

61900 
l.602x104KPa 

ap(Pressure (A)>Pressure (B)) = 
-$(5.825)2 

=(2323 psi) 

Summary - Max Pressures Support Can Withstand 

Max Ext Pressure l.324x104~pa 
(Pressure in (B)>Pressure in (A)) 

(1921 Psi) 

Max Int Pressure 
(Pressure in (A)>Pressure in (B)) 

1.602x104KPa 

(2323 psi) 
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41004640 - Landinq Gear, Active Control 

Tube Analysis 

(1.00 dia tube) 

t.75 dia tube) 

c.625 dia tube) 

O.D. . 0254M 
min=(l.OO in) 

I.D. max=1.00-2(.052-.005)=.0230M t.906 in) 

O.D. - 01905M 
min=(.750 in) 

I.D.max=. 750-2(.039-.oo5)='"'732M 
t.682 in) 

O.D. * 0159M 
min=(.625 in) 

I.D. =.625-2(.033-.005)=' 
01445M 

max t.569 in) 

R max .5015 3765 .314 -c-z =-= t .047 
JO.67 =+= 11.07 

.028 
11.21 

min 

Since these tubes are borderline between thinwall and thickwall, 
use thick wall analysis (Roark, 4th Ed., Table XIII, Case 35, P. 308). 

Tube Assys 41004829-101, -102, -103, -104, -107, -108 

'2 
.906 01151M 

(2 =p- b2:a2 
where - fax 2 -=i.453 in) 

1.00 .0127M ,bT,T = 
(.500 in) 

1.517x104KPa 
P= 

(2200 psi) 

4532 = 
aR=2200 -2 6.949x104KPa 

500 -.453 
2 . (10079 psi) 

b2+a2 
'H 

=p- = (2200)(.5002+.4532) =1.541x105KPa 

b2 a2 
-500 

2 
-.453 

2 (22359 psi) 
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41004640 - Landing Gear, Active Control 
Tube Analysis (cant) 
Tube ASSYS 41004829-101, -102, -103, -104, -107, -408 (cant) 

-1.517x104KPa 
ar'-P' (-2200 psi) 

T=p- 
b2:12 

=(2200) 8.465x104Kpa 

(12279 psi) 

o~(proof)=10079x1.5~ 1.042x105Kpa 

(15119 psi) 

uH(proof)=22359x1.5= 2.312X105Kpa 

(33539 psi) 

ur(proof)=-2200x1.5= -2.275x104KPa 

(-3300 psi) 

T(proof)=12279x1.5= l.270x105KPa 

(18419 psi) 

uE (equiv. stress theory)-.707 J (a -o~)~+(o 2 
R H-ur)2+(ur-uk) (Bruhn, P. Cl.91 

OE=- 15119-33539~2+(33539+3300~2+(-3300-,5119p = 2.199x105KPa 

(31899 psi) (proof) 

M.S. YIELD= 
120000(.91) 

31899 - 1= )2] 

(pressure only) 
M.S. SHEAR= 

(.55) (120000) (.91) 
18419 l= (2.26( 

YIELD I 

uR(burst)=10079x2.5= l.737x105KPa 
(25198 psi) 

5 
aH(burst)=22359x2.5=3~854x'o KPa 

(55898 psi) 

cr(burst)=-2200x2.5= -3.792x104KPa 

(-5500 psi) 
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41004640 - Landing Gear, Active Control 
Tube Analysis (cant) 
Tube ASSYS 47004829-707, -702, -103, -704, -107, -108 (cant) 

r(burst)=12279x2.5= 2.116x105KPa 

(30698 psi) 

707 (25198-55898)2+(55898+5500)2+(-55~t)-~~,g~)2 =3-665x1o KPa J- 

5 
uE=. 

(53164 psi) 

M.S. SHEAR= 
(.55) (142000)(.87) 

30698 -l-p1 

ULT 1 

M.S. ULT= 
142000(.87) 

53164 
-I= r1.321 

(pressure only) 

Bendins of 41004829-101 

Assume no support on tube assys from servo valve to Aircraft Pres- 
sure Return System. Let total weight be assumed at g shutoff valve 
and reacted in bending by above tube assy. (very conservative). 

Total Wt=5.00+.48+1.03+.97+1.29+1.35+.81+.60~ 5?.29N 
(11.53 lb) 

TUB 

1 / SHUTOFF 
VALVE TUBE ASSYS 

-a- ---_ 

51.29N 
7," 1.53LB.) 

4 49.53CM r) 
(SCALED) 

I(tube)= $ C 5o04 -.453 
4 . 1 6.664~10 

-gM4 

=(.016014 in4 
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41004640 - Landing Gear, Active Control 

Tube Analysis (cant) 
Bending of 41004829-101 (cant) 

. 0127M 
c=(.500 in) 'G' factor (vert. down)=5.85 g 

M=(11.53)(5.85)(19.62)='4g.5N-M (1323.3788 in/lb) 

(T = (1323.3788 in/lb)(.500) 2.849x105KPa = =3302KPa 
b .016014 

T= (11.53)(5.85) 

(41319 psi) $(1.002-.9062) (479 psi) 

Total uR =41319+15119 = 3.891x105KPa Total T=18419+479= 
1.303x105KPa 

(56438 psi) (proof) (18898 psi) 
(prooT) 

=41319+25198= 
4.586x105KPa 

(66517 psi) (burst) =30698+479= 2.149x105KPa 
(31177 psi) 

(burstr 

2 3.598x105KPa = 

(52194 psi) 
(proof & 5.85 g 
bending) 

M.S. YIELD= 
~20000(.91) -,= 

52194 
(proof pressure & bending) 

M.S. 
(.55) (?20000) (.91) 

SHEAR= 18898 
YIELD 

2 4.304x105KPa = 

(62433 psi) 
(burst & 5.85 g 
bending) 

M.S.ULT= 142000(.87) 
62433 

(burst pressure & bending) 

M.S.SHEAR= 
t.55) (142000) t.87) -,= 

31177 
ULT 
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41004640 - Landing Gear, Active Control -- 
Tube Analysis (cant) 
Bendina of 41004829-104 

Assume all parts from servo valve to manifold have their C.G. at E 
of shutoff valve and are reacted in bending by above tube assy. 
(very conservative). 

Total Wt=.60+1.20+.48= 10.14N 
(2.28 lb) 

M=(9.02)(5.85) (6.88) 

=41.02N-M 
(363.037 in/lb) 

Since moment is less than -101 t 
and tube is same diameter & 
thickness, further analysis is 
unnecessary. 

(SCALED) 

I 

Tube Assv 41004829-105 

P= 
1.517x104KPa a = . = 682 .00866# 

(2200 psi) max 2 (-341 in) 
750 . 

b %---= 
00953M = 

min t-375 in) 

.341 
2 

uR (limit)=(2200) =7.244x104KPa 

.375 2 
-.341 

2 
(10508 psi) 

3752+.341 2 
UH(limit)=(2200)' 1.601x105KPa 

.3752 -.341 
2 =(23217 psi) 

-1.517x104KPa 
U, (limit)= (-22oo psi) 

375 
2 

T(limit)=(2200) . 8.761x104KPa 

.3752-.341 
2 =(I2708 psi) 

5 

UH(proof)=23217x1.5=2.401x10 KPa 
(34826 PSI) 
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41004640 - Landing Gear, Active Control 
Tube Analysis (cant) 
Tube Assy 41004829-105 (cant) 

ur(proof)=-2200x1.5= 2.275x104KPa 

C-3300 psi) 

r(proof)=12708x1.5= 1.314x105KPa 

(19062 psi) 

5 
U =.707 E (15762-34826)2+(34826+3300)2+(-3jOO-,5762)2 =2-276x'o 'pa 

(33013 psi) 

M.S. YIELD' 
1200001.91) -,= 

33oLl3 

(proof pressure only) 

M.S. SHEAR= 
(.55)(120000)(.9~) -,= 

19062 
YIELD 

~~(burst)=10508x2.5= 1.811x105Kpa 

(26770 psi) 

aH(burst)=23217x2.5- 4.002x105KPa 
(58043 psi) 

4 
or(burst)=-2200x2.5=~~~~~~x~~i~pa 

T(burst)=12708x2.5= 2.190x105KPa 

(31770 psi) 

uE=. 26270-58043)2+(58043+5500)2+(-5500-26270)2 = 3.793x105KPa 

(55022 psi) 

M.S. ULT= 
142000(.87) += 

55022 

t (burst pressure only) 

M.S. SHEAR= 
(.55)(142000)(.87) -,= 

31770 
ULT 
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41004640 - Landing Gear, Active Control 
Tube An‘alysis (cant) 
Tube Assy 41004829-106 

1. 517xlo4KPa 
P = . 569 . 

(2200 psi) amax= 2 = 
007231.1 

f.2845 in) 

b 
min 

= ++=.00794M 
t.3125 in) 

OR (limit)= (2200) .i""" 2 =7.344x104KPa .3125 -.2845 2 

(10653 psi) 

oH(limit)=2200 .31252+.28452 = 1.620~10~~~a 

. 31252 -.28452 (23505 psi) 

-1.517xlo4KPa 
ar (limit) = 

(-2200 psi) 

2 4 
T(limit)=(2200) '2"' =8*861X10 KPa .3125 -.2845 2 

(12853 psi) 

oR(proof)=10653x1.5= l.102x105KPa 

(15980 psi) 

uH(proof)=23505x1.5= 2.431x105KPa 

(35258 psi) 

artproof)=-2200x1.5= -2.275x104KPa 

(-3300 psi) 

T(proof)=12853x1.5= l.329x105KPa 

(19280 psi) 

5 
aE= I 15980-35258)2+(35258+3300)2+(-3300-,5g80)2 =2-3o2x1o KPa 

(33387 psi) 
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41004640 - Landing Gear, Active Control 

Tube Analysis (cant) 
Tube Assy 41004829-106 (cant) 

M.S. YIELD= 
120000(.911 

33387 
(proof pressure only) 

M.S. SHEAR= 
(.55) (120000) (.91) -1= 

19280 
YIELD 

uR(burst)=10653x2.5= 1.836x105KPa 

(26633 psi) 

uH(burst)=23505x2.5= 4.051x105KPa 

(58763 psi) 

ur(burst)=-2200x2.5= -3.792x104KPa 

(-5500 psi) 

-r(burst)=12853x2.5= 2.215x105KPa 

(32133 psi) 

5 
uE=.707 (26633-58763)2+(58763+5500)2+(-5500-26633)2 =3*836x1o KPa 

(55645 psi) 

M.S .ULT= 142000(.87) -1- , 22 
55645 -I 

(burst pressure only) 

M.S. SHEAR= 
(.55)(142000)(.87) -1= 

32133 
ULT 
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41004640 - Landing Gear, Active Control 

Analysis - Adapter 41004819-001 (see FigA-7) 

Adapter is at top of MLG Support Assy, bolted to top and cut from 
square stock as an elbow. Cross section is square outside and 
circular inside, making it stronger than a simple cylinder. Part 
will be analyzed as a cylinder using min.wall thickness as constant 
(very conservative). (Roark, 4th Ed., Table XIII, Case 35, P. 308). 

*Min Top Wall =(2.75-.OlO)-(1.88+.010) +.00+~010)=;"~~~"r,, . 

*Min Side Wall =(.70-.OIO) -~(l.oo+.olo)=;O~~~Or,, 
. 

*Min Threaded Fluid Conn =(2.75-.OlO)-(1.88+.010)-( 
1.3125 .00492M 

2 =(.19375 in) 

*See Fig. I 

a=.6g-.185=a01283M . 01753M l.517x104KPa 
(.505 in) "(.69 in) p=(2200 psi) (limit) 

a2 .505 2 1.750x104KPa cR=P - = 

b2-a2 

=(2200) 2 

.69 -.505 

2 

(2538 psi) 

b2+a2 6g2+.505 2 

c*=P - =(2200)' 
=5.016x104KPa 

b2-a 2 -69 2 -.5052 (7276 psi) 

-l.517x104KPa 
cl = 

r 
(-2200 psi) 

b2 
T=p - 

b2-a2 
=(2200) 

.69 

2.69 
2 4 

-.505 

2 =3.266x10 KPa 

(4738 psi) 

cR(proof)=2538x1.5= 2.625x104KPa 

(3807 psi) 

aH(proof)=7276xI.5= 7.524x104KPa 

(10914 psi) 

artproof)=-2200x1.5= -2.275x104KPa 

(-3300 psi) 

r(proof)=4738x1.5= 4.900x104KPa 

(7107 psi) 
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41004640 - Landing Gear, Active Control ~ .~ 
Analysis - Adapter 41004819-001 (cant) 

4 
3807-10914)2+(10914+3300)2+(-~~00-3807)2 =8*485x1o KPa 

(12308 psi) 

M.S. YIELD= 
'45000(.921 -,- 

- 12308 

M.S. SHEAR= 
(.55)(145000)(.92) 

7107 
YIELD 

aQ(burst)=2538x2.5= 4.374x104KPa 

(6345 psi) 

uH(burst)=7276x2.5= 1.254x105KPa 

(18190 psi) 

ar(burst)=-2200x2.5= -3.792x104KPa 

t-5500 psi) 

T(burst)=4738x2.5= 8.166x104Kpa 

(11845 psi) 

5 
(6345-18190)2+(18190+5500)2+(-5500-6~~~)2 ='-4'4x1o KPa 

(20513 psi) 

M.S. ULT= 
'55000(.92) -,= 

20513 

M.S. SHEAR= 
t-551 (155000) t-921 -'= 5 62 

11845 El 
. 

ULT 

Loading on hold-down bolts = hydraulic end load + load due to motion 
of tubes & fittings between adapter & servovalve (which is tied to 
structure). 
Assume entire load of tubes imposes moment on end of adapter, moment 
arm at C.G. of tubes (very conservative). 
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41004640 - Landing Gear, Active Control - 
Analysis - Adapter 41004819-001 (cant) 

I- 24.9 (EST.]-E~ 

DIMENSIONS IN CM 

Vertical Load = (2200 psi) ($) (1.00)2=~~~~~ lb) 

Wt(tube assys)=2(.8l)+(.48)+(.97)+(l.lO)+(7.35)=~~o~~Nlb) 
. 

Moment = (5.52)(9.8)=~;~'~~~Min-lb) . 

Assume moment reacted by 2 hold-down bolts: 

Load/bolt = +(1728) + T 
' ~;:~~"]=~:~~"096 lb) 

Min breaking strength of bolt = '.294x'04N 
(2910 lb) 

(NAS1351C4H12) 

Assume burst pressure 6 max 'G' factor = 5.85 on Wt: 

Max load/bolt = +(1728x2.5)+; 1 =:;;;; 12 lb) . 

ADAPTER 
41004819-001 

-2.54 DIA 

M.S. BOLT= 
29'0 -,= 

1159.12 
(bolt) 

ULT 
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41004640 - Landing Gear, Active Control 
Analysis - Adapter 41004819-001 (cant) 

6M ub(on tab)= - =- 6(1'159.'2x.29) 

bt2 (.50)(.25)2 
(very conservative) 

u =4.449x105KPa 

b (64540 psi) WLT) 

M.S.ULT= 155000x.92 
64540 (lug) 

6.35THICK 

DIMENSIONS IN MM 
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41004640 - Landing Gear, Active Control 

Servo Valve Brackets 41004819-007, -008 

Assume weight of all components from 41004819-001 Adapter to 
41004819-002 Manifold are reacted at C.G. of 23241830 servo valve 
by the above brackets (very conservative). 

Total Wt=26.5+11.53+2.28- 179.3N 
(40.31 lb)" --_ -- -- -- --- r -- -- -----_ r=- 

DIMENSIONS IN CM 

Figure A-2. 

W AFT ='.5W 

W FWD =W (GFWD) W DOWN=W(GDOWNJ 
=?.5W =5.85W 

Servovalve Brackets 

W OUTBD -1.5w 

W UP =W(G UP) W INBD=W(GINBD) 
=2.'W =7.5w 
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1: 
I 41004640 - Landing Gear, Active Control 

Servo Valve Brackets 41004819-007, -008 (cant) 
Servo Valve Bolt Loads 

t 
17.8 17.8 

R2D 
+ E 

R4D - 
INBD D 

DIMENSIONS IN MM 

(CFD) WDOWN=R, +R2 +R3 +R4 -R; =R 
D D D D 

; =R; =R; =.25WDOWN 
D D D D 

R3fR4 D D 

(1) 

(CMI) W~~~~(2'50)=(R2 +R4 )(2.00)-(RI +R3 )(2'00) D D D D 

‘-25WINBD’-(R2 +R4 )+(R, +R3 )-let KD=-(R2 +R4 )=(R, +R3 ) 
D D D D D D D D 

2KD=1.25W INBD 

KD=.625W -R +R 
2D 4D 

=--625 W INBD &R +R INBD 13 
=+.625 W 

D D INBD 
from symmetry 11 II II II 

R1 =+-3125WINBD R2 =-.3i25WINBD 
D 

R3 =+.3725WINBD R4 =-.3125wINBD (2j 
D D D 

lCMF) WFWD(2.50)=(R3 +R4 )(3.00)-(RI +R2 )(3.00) 
D D D D 

.83333wFWD=(~3 +R4 )-(R, +R2 )-let KL=R3 +R4 =- (RI +R2 ) 
D D D D D D D D 

2K;=.83333WFWD 

K;=.41667WFWD-R +R4 =. 
3D D 

41667WFwD & RI +R2 =-.4'667WFwD 
D D 
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41004640 - Landing Gear, Active Control 

Servo Valve Brackets 41004819-007~ -008 (cant) 
Servo Valve Bolt Loads (c.ont) 
from symmetry 

111 III III 88, 
RI =-. 

D 
20833WFwD R2 =-.20833WFwD 

D 
R3 =.20833W 

D FWD R4D 
=.20833WFwD (3) 

Combining (I), (2), (3) = (4) WDOWN=5.85(40.31)= 1049N 
(235.8135 lb) 

W =w FwD=1.5(40.31)= 269.0N 
INBD (60.465 lb) 

R7 =.25WDOWN+.3125WINBD-.20833W 290.2N 

D FWD=(65.25201 lb) 

R2D 
=.25WDOWN-.3125WINBD-.20833w 122.2N 

FWD=(27.46139 lb) 

R3D 
=.25W DOWN+.3125W 402.3N 

INBD +.20833W FWD=(90.44536 lb) 

R4D 
=.25WDOWN-.3125WINBD+,20833W 234.2N 

FWD=(52.65474 lb) I 
(4) 

(CFI) WINBD=Rl +R2 +R3 +R4 -R 
67.24~ 

I I I I '1 
=R2 =R 

I 3I 
=R4 

I =~25WINBD=(15.1163 lb) (5) 

(CFF) WFWD=R1 +R2 +R3 +R4 -R =R 67.24~ 

F F F F 12 
=R =R 

3 4 =.25W 
F F F F FWD=(15."63 lb) (6) 

Analysis of NAS1228ClW bolt (l/2-20 bolt) 
(4) 

Max tension load =R3 
D 

=.25WDOWN+.3125WINBD+.20833WFwD 

R3D= 
402.3N 
(90.44536 lb) 

u = 90.44536 =39OOKPa 
t .I599 (565.637 psi) 

M.S. YIELD= 
"8000(.9'1 -,= LARGE 

565.637 

(5) (6) 

Max shear load = d- =$.25WINBD)2+(.25WFwD)2 =;;;I);;768 lb) R3 
I F 

68 



41004640 - Landinq Gear, Active Control 

Servo Valve Brackets 41004819-007, -008 (cant) 
pervo Valve Bolt Loads (cont.), 

=- 2.1 . 37'7'68 991.8KPa 
. 1486 = 

(743.861 psi) 

M.S. . 
YIELD= 

5~5*[“8000(.9’)1 -,- LARGE 
143.861 -1 

Bracket Bolt Loads 2F 
AD 

2F 2F 
BD cD 

(CMD )R, (3.00)'R3 (3.00)=3.5O(FFF )+2.'O(F+FE )+.7O(FF 
1-3 D D D D D D D DD) 

3.0O(R 
'D D 

-R3 )=7FA +4.2F +1.4F 
D 

13 
BD 

13 
cD 

13 

(CM 
D2-4 

)3.00(R2 -R4 
D D 

)=7FA +4.2F +1.5F 

D24 
B 

D24 
C 

D24 

M 
Ml 3=3.00(R1 -R3 ) 

D D 
'A 

FA = 7 D(~~u~~, P.Dl.14) where M2-4 
D 

=3.00(R2 -R4 ) 
D D 

I=2[r2 +r2 +r2 c ]=2[3.502+2.io2+.702i 
AD BD D 

=34.30 

*Ref. MIL-HDBK-5C, Para. 1.4.6.3 
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41004640 - Landing Gear, Active Control 

Servo Valve Brackets 41004819-007, -008 (cant) 
Bracket Bolt Loads (cant) 

=F; = 
(Mlw30r M2,4) (3.50) 

D13 D13 
34.30 =.30612 (RI -R3 );F; =F' 

D D D24 FD 24 

=.30612(R2 -R4 ) 
D D 

F; 

D13 

=F; = 
(Mle30r M2,4) (2.10) 

D13 
34.30 =.I8367 (R, -R3 );F; 

D D 
=F; 

D24 D24 

=. 18367(R2 -R4 ) 
D D 

F' 
(Ml,30r M2-4) t.70) 

cD 
=F' = 

D 
D13 

34.30 =.06122 (R, -R 3 );F; =F; 

13 D D D 24 D24 

=.06122(R2 -R4 ) 
D D 

(CFD )R, +R3 =2FA +2FB +2FC -cF; 
l-3 D D D D D D13 

=F; 

D13 

=F; 

D13 

=F; 

D13 

=F; 

D13 

=F; 

D13 

= ;(R, +R3 ) 
D D 

( CFD 
2-4 

)R2 +R4 =2FA +2FB +2FC -F; 
D D D D D D24 

=F; 

D24 

=F; =F; 

D24 D24 

=F; =F; 

D24 D24 

= ;tR2 +R4 1 
D D 

( CMF ) 
l-3 

) (RI +R3 
F F 

) (.50)=3.50(-FA 
D13 

+FF 

D13 
)+2.10(-FB +FE 

D13 D13 

1 (7) 

! 

(8) 

+.70(-FC +FD ) 
D13 D13 
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41004640 - Landing Gear, Active Control 
Servo Valve Brackets 41004819-007, -008 (cant) 
Bracket Bolt Loads (cant) 

( CMF ) 
I 2-4 

1 (RARE ) (.80)=3.50(-FA 
F F 

D24 

+F~ 

D24 

)+2.10(-FB +FE 
D24 D24 

+.70(-F, +FD ) 
L D 

24 D24 

111 111 
t.50) (R, +R3 ) (3.50) 

-FA =FF F F = 
34.30 

= . 

D13 D13 

05102 (RI +R3 ) 
F F 

111 III 
t.50) (RI +R3 ) (2.10) 

-F =F = F F 
BD E 34.30 

= . 
D13 

03061 (RI +R3 ) 
13 

F F 

111 
t-50) (RI ) (-70) 

111 
-F =F F 

+R3 
F = . = 

cD 34.30 
01020 (RI +R 

F 3F) 
13 

DD 
13 

,I, ,1, 
t.80) (R2 +R4 ) (3.50) 

-F =F = F F 
A 

D24 
F 

D24 
34.30 

= . 08163 (R2 +R4 ) 
F F 

111 111 
l.80) (R2 +R4 ) (2.10) 

-F F F 
B 

=F = 
E 34.30 

= . 
D24 

04898 (R2 +R4 ) 

D24 
F F 

111 111 
t.80) (R2 +R4 ) (-70) 

-F =F = F F 
C = . 01633 

D24 
D 

D24 
34.30 

(R2 +R4 ) 
F F 

l-3 
Combining (7), (8), (9) = (10) (for right side) 

II 

F A =F; +FA +F;' =.47279R'1 

D13 D13 
D 

-.13945R3 -.05102(R, +R 

13 D13 
D D F 

F AD = 74.26~ 
13 

(16.69543 lb) 

\ 

1 (9) 

/ 

I (101 
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41004640 - Landing Gear, Active Control 

Servo Valve Brackets 41004819-007, -008 (cant) 
Bracket Bolt Loads (cant) 

F BD F' 

13 
= BD +F; +F;' 

13 D13 D13 

=.35034R, 
D 

-.017R3 -.03061(R, +R3 ) 
D F F 

F 
BD13= 

90.73N 
(20.39740 lb) 

11 

FC 
D13 

=F; 

D?3 

+FC +F;' 

D13 D13 

=.22789R, 
D 

-.10545R3 -.01020(R, +R3 ) 
D F F 

F 
cD 

107.2N 
13=(24.09937 lb) 

II 111 
F F' DD =D +F D +F 

D?3 D13 
D 

D?3 

=.22789R, +.?0545R3 +.0?02O(R, +R3 ) 

13 
D D F F 

F D '09.9N 
D13=(24.71612 lb) 

FE =F; +F; +F;' 

D13 D13 D13 D13 

=.35034R, 
D 

-.017R3 +.03061(R, +R3 ) 
D F F 

F 
ED13= 

98.96N 
(22.24824 lb) 

FF 
D13 

=F; 

D13 

+F; +F;' 

D13 D13 

=.47279R, 
D 

-.13945R3 +.05102(R, +R3 ) 
D F F 

F 
FD =87.98N 

13 (19.78036 lb) 

(10) 
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41004640 - Landing Gear, Active Control 
Servo Valve Brackets 41004819-007, -008 (cant) 
Bracket Bolt Loads (cant) 

2-4 
Combining (7), (8), (9) = (10) (for left side) 

I I, 111 

F 
AD 

=FA +F 
24 D24 AD 

+F A 
D24 

=.47279R2 -.13945R4 -.08163(R 

24 D D 2F+R4F) 

F A 14.11N 
D24=(3.17288 lb) 

FB =F' 
11 111 

B +F +F 
D24 D24 BD24 BD24 

=.35034R2 
D 

-.017R4 -.04898(R2 +R 
D F 4,) 

F B =32.23N 
D24 (7.24490 lb) 

I II 111 

FC =FC 
D24 D24 

+FC 

D24 

+FC 

D24 
=.22789R2 

D 
+.10545R4 

D 
-.01633(R' +R4 ) 

2F F 

F 
cD =50.34N 

24 (11.31692 lb) 

FD =F; +F 
II IIt 

24 D24 
D +F 

D D24 
D 

D24 

=.22789R2 +.10545R4 +.01633(R2 +R4 ) 
D D F F 

FD =54.73N 
D24 (12.30432 lb) 

FE 
D 

=F; +F; 
D24 D24 

+F;' 
D24 

=.35034R2 
D 

-.017R4 +.04898(R 
24 D 2F+R4F) 

F 
ED 

45.40N 
24=(10.20649 lb) 

F F =F; +F; +F;' =.47279R2 -.13945R4 +.08163(R 2F+R4 I 
D24 D24 D24 D24 D D F 

F F =36.07N 
D24 (8.10865 lb) 

’ (10) 
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41004640 - Landing Gear, Active Control 

Servo Valve Brackets 41004819-007, -008 (cant) 
Bracket Bolt Loads (c'ont) 

(CFF -F \ 
l-3 

)R, +R3 =FA 
F F 

F13 

+FB 

F13 

+FC 

F13 

+FD 

F13 

+FE 
F13 

+FF 
F13 

A =FB 

Fi3 F13 

=F C 
F13 

=FD =FE =FF 
F13 F13 F13 

=;(R, +R3 ) 
F F 

b(") 
(IF )R2 +R4 =FA 

F2-4 F F F24 
+FB +FC 

F24 F24 

+FD 
F24 

+FE 
F24 

+FF -F F 

F24 
AF 

24 
= BF 

24 

=F C =F D =F E =F 

F24 F24 F24 
F 

F24 

=;(R2 +R4 ) 
F F 

;(R, +R3 
F F 

)=;(R2 +R4 )=::-;;;8 lb) 
FF * I 

(CF )FA 
II-3 

=FB F = c F = D =FE =FF =;(R, +R3 1 [tens.or camp.] 
I13 I13 I13 I13 I13 

I 
13 

I I 

I 

(12) 

(CF )FA =FB 
'2-4 124 

=FC =F D =FE =F F =$(R2 +R4 1 [tens-or camp.] 
'24 '24 '24 '24 '24 

I I 

;(R, +R3 
I I 

)=&(R2 +R4 )=::';;;8 lb) 
II - 

Analysis of NAS1224ClW Bolt (l/4-28 bolt) 

Max Tension Load = F~ = 
22.369N 

I13 (5.0388 lb) 

5.0388 9.544xlo5KPa 
Crt = -En= (138.429 psi) 

M.S. YIELD= 
'18000(.91) 

138.429 
-I= 

Max Shear Load (24.71612)2+(5.0388)2 
112.2N 

=(25.2245 lb) 
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41004640 - Landing Gear, Active Control 

Servo Valve Brackets 41004819-007, -008 (cant) 
Analysis of NAS1224ClW Bolt (l/4-28 bolt) 

T= 25.2245 =533.4KPa 
I 0326 

(773.758 psi) 

M.S. 
.55[“8O’JO(.91)1 -,= 

YIELD= 773.75 

At bend of bracket, stress results from tension load and side load 
tending to bend bracket. The bending is distributed somewhat evenly 
along the length of the bracket, but the tension load is much less 
evenly distributed. Conservative analysis will be used. 

ub(bending stress)= z2 = 
6 (R2 ) (1.25+.80.) 

I 
+R4 

I 8.074X104KPa = 
bt (8.00) (.063)2 (11711.4 psi) 
F 

DD 
13 ut(tensile stress)= r= 6(24.71612) =2029KPa 

Zbt (8.00) l.063) 
(294.24 psi) 

U 
u +u =8.277x?04KPa 

TOTAL b t 
(12006 psi) 

M.S. (35000) (.88) 
YIELD= 12006 

‘c= 

FA +FB 
F F 

+FC +FD +FE +FF 
F F F F 
bt 

;e 
R2 +R4F F 

bt 

M.S. . 
YIELD= 

83(27000) C.88) -,= LARGE 
59.985 

= 30.2326 
(8.00) t.063) 

=413.5KPa 

(59.985 psi) 

Up load on brackets is much smaller than down load. Since the 
buckling length of the bracket sheet metal is so small, it will 
not be necessary to analyze it for "up" load. 
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41004640 - Landing Gear, Active Control 

Accumulator, Clamps L Brackets 
Composite Weight (assume reacted at C.G. of assy) 

4 Accumulators (empty) (MS28797-7) 
2 Clamps (41004819-003) 
2 Clamps (41004819-004) 
2 Clamps (41004819-005) 
4 Brackets (41004819-006) 
4 Bolts (NAS1228C132) 

16 Bolts (NAS1226C6) 
2 Bolts (NAS1224C32) 
4 Nuts (AN315C4R) 
2 Bolts (NAS1223Cl) 
7 Valve, Sol. Oper. Shutoff (25200 or 25450) 
1 Bracket (41004819-009) 

Oil for Accumulators (1600 in3x.0298 lb/in3) 

Accumulator Subtotal 

1 Manifold (41004819-002) 
4 Pipe Assy (41004829-105) 
4 Plug (AN8?4-12) 
1 Plug (AN814-16) 
4 Union (AN815-12) 

Total 

'FWDd- 
l&2 

I ’ f . I 
W DOWN 

DIMENSIONS IN CM l&2 

.N LBS 

444.8 
14.59 
31.31 

8.095 
6.405 
9.385 
2.980 

. 311 

. 133 

. 0445 
22.24 

. 311 
FJ12.1 

752.7 

100.00 
3.28 
7.04 
1.82 
1.44 
2.11 

.67 

.07 

. 03 

.Ol 
5.00 

.07 
47.68 

34.43 
9.074 
3.914 
1.423 
5.693 

807.2 

169.22 

7.74 
2.04 

.88 
I 32 

1.28 

181.48 

w,= $69.22) 

=376.4N 
(84.61 lb 

w2= $169.22) 

+(181.48-169.22) 

430.9N 
=(96.87 lb) 
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41004640 - Landing Gear, Active Controls 

Accumulator, Clamps L Brackets (cant) 

SIDE VIEW 

W FWD, =1.5w, W DOWN, =5.85W, 

W FWD2 =L5W2 W DOWN2 =5.8512 

w,=. 87344W2 

W 564.5N 
FWD, =(126.915 lb) 

W 646.3~ 
FWD2 =(145.305 lb) 

W =564.5N 
INBD, (126.915 lb) 

W 646.3~ 
INBD2 =(145.305 lb) 

W 
up1 

=2.1w, W INBD, =1.5w, 

W UP2 =2.1w2 W INBD, =1.5w2 

W =2202N 790.3N 
DOWN, (494.969 lb) W 

up1 =(177.681 lb) 

W 2521N =904.8N 
DOWN2 =(566.690 lb) W 

up2 (203.427 lb) 
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41004640 - Landing Gear, Active Controls 

Accumulator, Clamps & Brackets (cant) 
Load Calculations 

Due to flexure of accumulators and reasonable looseness of clamped 
assembly, the loadings at area 1 and area 2 can be treated separately. 

(CFD) R;, =R' = f WDOWN 
2 D4 2 

I 
=R' 

RD, D3= 
fW DOWN, 

(CM11 (WINBD +WINBD ) (5.40)= 
[ 
(R; +R; )- (R" +R" ) (22;275) 

1 2 2 4 Dl D3 I 

-R; =R;; z-R; CR" 
D4 

=.12067(wINBD +wINBD 1 (2) 
12 3 1 2 

(CMF) Since this is a clamped assembly, loading must be treated as 
reacting on individual parts instead of as an assembly. 

MF =w 
1 

FWD (5.40) 
1 

F= (5.40 
5.50)w~WDl 

F=.98182WFWD 
1 

111 
RD =( 11.38-8.44) 

1 
11.38 

I II 

R 
Dl 

=.25365WFwD 
1 

111 

:. R 
D2 

=.25365WFwD 
2 

(. 98182WF 

111 

R 5.7 
D3 

111 

RD4= .7 281 

287 

i 
I 

I 

COMP. DIRECTLY I - A 
INTO BRACKET ' 

w 

"FWD, 

7w FWD~ I 
--- 1 

1 (3) 

7WFWD2 ) k28-:-$ 1 

T 
3.7 

1 

DIMENSIONS IN CM 
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41004640 - Landing Gear, Active Controls 

Accumulator, Clamps f Brackets (cant) 
Load Calculations 

Combining (I), (2), (3) = (4) 
i t R =R; +R; +R;'=.5WDDWN -.12067 

D1lll 
+.25365WFwD 

1 1 
+WINBD 

2 1 1 

1098N 
=(246.82770 lb) 

R +.I2067 
D2 

=R; +RI1 
2 D2 

+R;'=.5WDOWN 
+WINBD +.25365wFwD 2 2 1 2 3 2 

1570N 
=(353.05040 lb) 

RD =R; +'R; +R;'=.5WDOWN -.I2067 

C 
WINBD +WINBD 1 2 

+.72817wFwD 
3 3 3 3 1 1 1 

1366N 
=(307.05141 lb) 

181 

RD =R' +Rn +R +.72817WFwD 
4 D4 D4 D4 

=.5w DOWN +*12o67 2 C 
WINBD +WINBD 1 2 1 2 

1877N 
=(422.00053 lb) 

( CFI)WINBD 
1 
+WINBD =RI +RI +RI +RI 

2 12 3 4 

R )= 302.7N 

I1 
=RI =RI =RI 

2 3 4 
=.25(WINBD +WINBD 

1 2 (68.055 lb) 

(CFF)WFWD +WFWD =RF +RF +RF +RF 
1 2 12 3 4 

302.7N 
RF =R =R 

F2 F3 
=RF 

4 
=.25(wFWD +wFWD 

1 1 2 )=(68.055 lb) 

Analysis of NAS1228C132 Bolt (I/2-20) 

Max Tension Load = RD +. 12067 +.72817WFwD 
4 =.5WDOWN 2 1 

+WINBD 
2 3 2 

RD = 1877N 
4 (422.001 lb) 

'(4) 

(5) 

(61 
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41004640 - Landing Gear, Active Controls 

Load Calculations (cant) 
Analvsis of NAS1228C132 Bolt (l/2-20) 

422.001 at= =1.819x104KPa 
.I599 (2639 psi) 

M.S. YIELD= 
118000(.91) -1= LARGE 

2639 

Pp. (422.001) (10.90) .00271MM G(max defl)= 'AE 
(.1486)(29x106) 

=(.00106739 in) 

(5) (6) 

Max Shear Load= (68.055)2+(68.055)2 =;;;-;z,, lb) . 

~= 96.2443 =4465KPa 
. 1486 

(647.674 psi) 

M.S. YIELD= 
.55[118000(.91)1 -,= LARGE 

647.674 
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41004640 - Landing Gear, Active Controls 

Accumulator. ClamDs & Brackets (cant) 
Analvsis of Lower Clamr, (41004819-003) 

g SYM 
E BOLT E BOLT 

I 
I 
I I- 6.99-!= 7.47 

I 

t 
I 0. 0'076 0. 0'1 02 

I R 
D2 

‘2.44 2 36THICK(-003); . I R 
2.79 t.051 THICK(-004) D4 

DIMENSIONS IN CM 

F2=.5W DOWN +.12067[WINBD 
2 1 

+WINBD 
2 

1=;::::19379 lb) 

P4=. SW DOWN2 +.I2067 [WINBD 
1 
+WINBD 

2 
]=.98182WFwD 

2 

RD, ;! 
I F2 RD 

2 
- F2 

=2041N 
(458.85715 lb) 

R 
D4 

2.94 R 
D2 

117.3N-M 

140.2N-M 
=(1240.6816in-lb) 
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41004640 - Landing Gear, Active Controls 

Accumulator, Clamps & Brackets (cant) 
Analysis of Lower Clamp (.4!CJO4819-003) (cant) 

M =2.94RD = 140.2N-M 
MAX 

2.3& 
(1240.6816 in-lb) 

bMIN = t.93 in) 

t MIN=(2.99-2.51)=;-~~c~n) 
. 

ad2L= 6t1240.6816) 
b bt2 (.93)(.48)2 

2.395X105KPa 
'b= 

(34741 psi) 

M.S. YIELD= 
57000(.85) 

34741 
-I= [0.391 

F4 458.85715 7087KPa 
== bt = l-93) t-48) =(1028 psi) 

M.S. 
[38000(.91)] (g) 

YIELD= 1028 

Analvsis of UDoer Clamp (41004819-004) 

Assume same loading conditions at -003 apply to -004. 

M =2.94R = 140.2N-M 
MAX D4 (1240.6816 in-lb) 

b 2.74cM 
MIN=(1.08 in) t MIN'(2-99-2.51)';:;;cyn) 

(J = _ 6tl240.6816) =2.062x105KPa 6~ 
b bt2 (l.08)(.48)2 (29916 psi) 
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41004640 - Landing Gear, Active Controls 
Accumulator, Clamps & Brackets (cant) 
Analysis of Upper Clamp (41004819-004) (cant) 

M.S. YIELD= 
57000(.851 += 

29916 

F4 
T= bt = 

458.85715 6101KPa 
(1.081 t-481 =(885 psi) 

M.S. YIELD= 
C38000 (.91)] (g) 

885 

Analysis of Bracket (41004819-006) 

0.33 2PL 

DIMENSIONS IN CM 

-0.81R 2PL 

/ 

Since we don't know which will react first, loads in bolts "A" or 
" B " , we will use total loads in "A" first and then total loads in 
"B" next. (conservative). 

83 



41004640 - Landing Gear, Active Controls 

Accumulator, Clamps & Brackets (cant) 
Analysis of Bracket (41004819-006) (cant) 

Loading Condition # 1 

F MAX =.98182wFwD =634-6N 2 (142.66336 lb) 

Reacted at bracket as: 

R 634.6~ 
F =FMAX=(142.66336 lb) (camp. load into bracket) 

Y 

(F 

RFH= 
MAX) (3.705) 2261N 

1.04 =(508.23822 lb) (shear load on bolts) 

Loading Condition #2 

=-5WDOWN 2 
+.12067[WIN,BD +wINBD 

1 2 
]+.72817WFwD =1877N 

MAX 
2 (422.00053 lb) 

=.25[WFWD +WFWD ]= 302.7N 

1 2 (68.055 lb) 

R =.25[WINBD +wINBD I= 
302.7N 

I4 1 2 (68.055 lb) 

Reacted at bracket as: 

F =R = 1877N (tension load on bolts "A" 

D4 D4 (422.00053 lb) shear load on bolts "B") 

F =R +(' l~~~~~~:~)RD4=l~~~"23806 lb) 
(shear load on 

F4 F4 bolts "A" 6 ,,Bw) 

FI =R l-40+.040 

4 
+tl o5 

I4 - -.010'RD4=~:~;r,,353 lb) 
(tens.or comp,load on bolts "B" 
shear load on bolts "A") 

It is obvious from the above information that loading condition #2 is 
the more severe of the two and will be used for anlysis. 
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41004640 - Landing Gear, Active Controls 

Accumulator, Clamps & Brackets (cant) 
Analysis of Bracket (41004819-006) (coll't) 

Bolts "A" (assuming only 1 bolt reacts) 
f * 

fF' 
\ 

(each bolt) 
D4 

(tension); F 
F4 

(shear); F 
I4 

(shear) 

1 
3 

at= 
F(422.001) = 1.657x104KPa 

- -24 bolt 
8 

-0878 
'(2403. psi) 

As(tensile stress area)= 0.566CM2 
(-0878 in2) 

Total Shear Load= i/m =d (F (362.238)2+(652.363)2 =;;;;N186 lb) 
3 

. 
- -24 bolt 

Tc= 746.186 =6.359x104KPa 8 
A(shear stress area)= 0.519CM2 

-0809 
(9224 psi) t-0809 in2) 

=P = MAX 
$ +ds = 24203 +dw =7-241x104KPa 

(10503 DSi) 

Bolts "B" 

(assuming only 1 bolt reacts) 

(each bolt) 
/ 
FD (shear); FD (shear;; (tension) 

4 4 I4 

Total Shear Load= (422.001)2+(362.238)2 =;;;;N14855 lb) 
. 

556.149 = 4.740x104KPa T= -0809 
(6875 psi) 
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41004640 - Landing Gear, Active Controls 
Accumulator, Clamps & Brackets (con-t) 
Analysis of Bracket (41004819-006 (cant) 

1 
(J = T(652.363) =2.561x104KPa 

t -0878 (3715 psi) 

2 
ut % 

uP = 2+ J (,) +T2 = - 
MAX 

37215 +dz =6.190x104KPa 

(8979 psi) 

TMAX= +dF = t\/(3715)2+4(6875)2 =4-g10x104Kpa 
(7122 psi) 

M.S. (either bolts "A" or "B") 

Bolts "C!" 

(direct tension loads) F 

c1 
+F =F 

c2 c4 
4FC =FC =.5FD 

12 4 

(tension due to moment 
caused by FF ) 

4 

F 
c, 

. 75F C =2.25FC 

I 1 2 

4 z 
1.91CM 

‘(CM) .75F 
c1 

+2.25F 
c2 

=l.O6F 
F4 

. 75F 
c1 

+2.25(& )=i.06~ 
1 F4 

1.06FF 

-YzA . 

FC = -4 
1.50 

=.70667F 
1 F4 

F 
c2 

=.23556F 
F4 
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41004640 - Landing Gear, Active Controls 
Accumulator, Clapms & Brackets (cant) 
Analysis of Bracket (41004819-006) (cant) 

(max tension due to moment F =F = 1 2.91 

caused by FI at "A") c1 c2 
2 (l.22-.81)(F14) 1 =3.54878F 

I4 
4 

(total loads) F =.5F +.70667F +3.54878F 
(tension) cl D4 F4 I4 

=(.5)(422.001)+(.70667)(362.238)+(3.54878)(652.363) 

1.238x104N 
=(2782.076 lb) 

(max tension) 

FC2 
=.5FD +.23556FF +3.54878F 

4 4 =4 

=.(.5) (422.001)+(.23556)(362.238)+(3.54878)(652.363) 

1.162x104N 

=*m 

(total loads) 
(shear) 

FC ,=F,-&.=\/ (362.238)2+(652.363)2 

(assume only 1 3319N 
bolt takes load) =(746.1862 lb) 

Tmax shear) 
The above are load requirements for attaching to aircraft structure 
(assume 2 attachments located approximately as shown on P. 83). 

Top of Fitting 

Use rectangular plate, 3 edges simply supported, 4th edge free, 
uniformly loaded. (Timoshenko, "Theory of Plates & Shells", P. 211-215). 

7.11CM b,3-10CM b= 43571 9.4MM 
a=(2.80) (1.22) a . tMIN=(.37 in) 

(Mx)MAX=.060qa2 (table 42) 

F +F 
c1 c2 

'= ab 
= (2782.076)+(2611.422) =1.08gx104KPa 

(2.80)(1.22) 
(1578.8929 lb/in2 
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41004640 - Landing Gear, Active Controls 

Accumulator, Clamps & Brackets (cant) 
Analvsis of Bracket (41.004819-0'06) (cant) 

l"x)MAX 
=(.060) ,1578.8929,,2.8)2=j;;;N;;(; in lb,in) . 

6 (Ma) MAX 

'b= 
= 6t742.7112) =2.244X105Kpa 

t2 .372 (32551 psi) 

M.S. 57000(.85) 
YIELD= 32551 

Back of Fitting 

Use rectangular plate, 4 edges simply supported, load uniformly 
distributed over rectangular area (Timoshenko, "Theory of Plates 
t Shells, P. 158-161). 

,,7.37CM 2.54CM 
(2.90 in) u=(l.OO in) v=.33 

b,7.11CM 5.08~~ 5=1.04 
(2.80 in) v=(2.00 in) 

(conservative) 

t - 305CM b 
MIN=(.12 in) 2 =. 96552 k= % =2.00 

5 - =.35862 a d=dE=2.236 

(from table 26) (p=1.481 (from table 27) x=2 -6964 
Y=.374 p=.110 

p=F = 
2902N 

I4 (652.363 lb) 

lr5 1 
M= 4a Sin a 

X 
& ((2) ln( c 7Td )+X-(p) (l+Y)+(y+Q) (1-V) J 

71C1.04) 
652.363 

M= 8'IT 
4t2.90) Sin 

X n(2.236) 
2-go )+2.6964-1.481)(1.33) 

1 
+(.110+.374)(.67) 

J 
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41004640 - Landing Gear, Active Controls 

Accumulator, Clamps C Brackets (cant) - ~-~ __ 
Analysis of .Bracket (41004819-006) (cant) ~ _- . ~~ 

Back of Fitting (cant) 

Mx=(25.95670) (1.49111)+2.6964-l-481)(1.33)+.32428 1 
M= 346.8N-M/M 

x (77.96088 in-lb/in 

Id 
M=& 4a Sin a 

Y ((2)ln ( 7Td 1 +x-m ( 1 +v1- w-L+*/) ( 1 -VI 

My=(25.95670) C (.79905*2.6964-l-481)(1.33)-.32428 =:;;.;;;t{Min-lb,in) 1 . 
6MX 

u=t2= 
6t77.96088) =2.239x105KPa 

X 
-12 

2 
(32483 psi) 

M.S. YIELD= 
57000(.85) 

32483 

Comnression Bucklina 

The only way for above bracket to be in compression is for RD to 
be "UP " instead of "down". 4 

R 
D4 

=.5wup +.I2067 
2 

INBD2 1 +.72817WFwD (Ref. P. 78) 
2 

=(.5)(203.427)+(.12067) 
C 

126.915+145.305 +(.72817)(145.305) 1 
1069N 

=(240.36903 lb) 
1069N 

F 
D4 

=(240.369 lb) 
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41004640 - Landing Gear, Active Controls 

Accumulator, Clamps 6 Brackets (cant) 
Analysis of Bracket (41004819-006) (cant) 

Compression Buckling (cant) 

F 
F4 

=68.055+ 
675+.050 1048N 

'; 05-.olo) (240.36W=(235 620 lb) 
. . Less than loads on 

P-84 - Do not need 

FI 
4 

=68-055+ (1.05-.OIO '.40+-040)(240.369)=;;;;N874 lb) 
to analyze shears. 

. 

(from P. 84) 
Total Compression Load = R +F 1726N 

FV D4 
=142.663+240.369=(383.032 lbl 

Crippling allowable (Bruhn, Page C7.1) 

a+b -= 

2t 

l-25+1.40 =11 042 
2(.12) - 

(from Fig. C7.3) Fee 
- = -057 (one edge free) --j(-0.305CM 

TYP 

2.776x105KPa 
F ..=.05 57000)(.85)(10.3x106) = 

(40266 psi) 

Area= 
C 
2.80+2(1.25) (.12)= 1 4.1CM2 

(-636 in2) 

U= 383.032 =415OKPa 
C . 636 

(602 psi) 

M.S.= F -I=p] 
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41004640 - Landing Gear, Active Control 5.738N 
(1.29 lb) 

Bracket, Shutoff Valve - 41004819-009 

A/C 

(3.99 lb) (.48 1 

22.55N (5.07 lb) 
17.75N 2.135N 2.135N 16.06N 2.669N 
(3.99 lb) (-48 lb) 1 f-48 lb) (3.f 51 lb) (.60 lb) 

3.60'3N 
(-8' 1 lb) 

I- 2.3831 (93.85 in) 

I 
p-2.306M (90.80 in) z 

p-2.3799 (93.66 in) * 

C 

'R3 

P 

0 0 
~A(74.19)+2MB(74.19+19.66)+jiC(19.66)= - (3.99) (36.00)(38.19)(74.19+36.00) 

74.19 

(-48) (72.19)(2.00)(74.19+72.19) _ (-48) (2.00)(17.66) (19.66+17.66) 
74.19 19.66 

_ (l-03)(7.22) (12.44) (19.66+12.44) _ (3.61) (13.08) (6.58).(19.66+6.58) 
19.66 19.66 

(.81)(16.61)(3.05) (19.66+3.05) _ (.60) '".":;';;" (19.66+.19) 
19.66 . 

l87.7MB=-8147.~531-136.73656-32.l8252-15l.O4847-4l4.6877-47.4OlO7 

-5.376N-M -2.24103=-8931.7504 

M~'(-47.58525 in-lb) 
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41004640 - Landina Gear. Active Control 

Bracket, Shutoff Valve - 41004819-009 (cant) 

22.55N (5.07 lb) 

17.75N 2.135N 
11 

2.135N 16.06N 2.669N 
(3.99 lb) (-48 lb) (.48 lb) (3.61 lb) (-60 lb) 

(0 in-lb) 5.376N-M 

h Ni 4.5818 3.603N 
'd(O in-lb) 

(47.58525 in-lb) (1.03 lb) (-81 lb) 

t 
9.136N 11.281 

tt 
11.28N 0.2172N 

(2.053891b) (2.535 lb) (2.535 lb) t (.04883 lb) 

t 
0.05756 N 2.0788 

tt 
1.918N 1.683N 

(-01294 lb) (.46706lb) (.43117 lb) t t.37826 lb) 

1 
2.853N 8.612N 

tt 
2.899N 10.68N 

(.641401b)(1.93611 lb) (-65174 lb) (2.40177 lb) t 

2.85313 
tt 

5.374N 3.0448 
(-64140 lb) (1.20823 lb) (-68434 lb) t 

t 
0.589N 2.643~ 
t-12566 lb) t.59420 lb) t 

t 
0.02581 10.77N 
(.00580 lb) (2.42041 lb) 1 

t 
10.77N 
(2.42041 lb) 

6.340N 
%-(1.42543 lbs) 

57.64~ 
R2-.(12.95758 lbs) 

7.5041 
R3-(l.68699 lbs) 

(check) R1+R2+R3=16.07=3.99+.48+5.O7+.48+l.O3+3.6l+.8l+.6O 

,',max Wt on bracket = 57.65~ 
(12.96 lb) 

This Wt combined with the required "g" factors will determine max 
loading conditions to analyze bracket. 
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41004640 - Landing Gear, Active Controls 

Bracket, shutoff Valve - 41004819-009 (co.nt) 

I I 
i (?I 

u I l--II n !F 7.62 
. -- U. I"" 

., 
W W 

FWD I I 

I W DOWN 
I 

I 

l I 

INBD I I 
I 6.985 

DIMENSIONS IN CM 

W =w AFT=1.5R = 86.47~ 
FWD 2 (19.44 lb) 

W DOWN=5.85R = 337.3N 
2 (75.82 lb) 

W 121.1N 
UP=2'1R2.=(27.22 lb) 

W =W 86.47N 
INBD OUTBD =1-5R2=(19.44 lb) 

(moment at (A)-(A)) M~A)=2.39WDOWN+3.00WAFT=~~~~6~~Min-lb) . 

3.353CM b=2.32-(2x.50)=(,.32 in) 
160CM 

t=;.063 in) 

6(239.53) _1.891x106KPa 

(l.32)(.06312 (274319 psi) 
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41004640 - Landins Gear, Active Controls 

Bracket, Shutoff Valve - 41004819-009 (cant) 

T(A) =3.00WINBD 
6.589N-M 

=(3.00(l.9.44)=(58~32 in-lb) 

7 MAX= 
3T(A) [,,.6 3=3(58.32) I+.6 S] =2.368x105KPa 

bt2 (1.32) L063)2 (34351 psi) 

This is not a structural part. For location purposes only. To 
make part structural, see below. 

6 (239.53) 477CM 
(35000) (.88)(1.32) =;.188 in) 

To be structural, bracket must be either-' 508~~ 
t.20 in) thick or must be 

designed to include side gussets capable of taking sufficient 

compression load. 
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DESIGN SPECIFICATION, FLIGHTWORTHY 

ELECTRO-HYDRAULIC ACTIVE CONTROL 

LANDING GEAR SYSTEM FOR 

A SUPERSONIC AIRPLANE 
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1.0 SCOPE 
This document establishes the requirements and defines 

the design objectives for an,electro-hydraulic active control landing 
gear system for a supersonic aircraft, based on a modified 
landing gear. 

2.0 APPLICABLE DOCUMENTS 
The following documents form a part of this specification 

to the extent that they are applicable: 

Contract NASl-15455 issued by NASA Langley Research 
Center, Hampton, Virginia 

MIL-STD-810C - Environmental Test Methods 

MIL-STD-461 - Electromagnetic Interference Characteristics 

MIL-E-5400 - Electrical Equipment, Airborne General 
Specification 

MIL-STD-454 - Standard General Requirements for Electronic 
Equipment 

MIL-STD-275 - Printed Wiring for Electronic Equipment 

QQ-A-325 - Aluminum Alloy Sheet 

MIL-S-19500/X - Semiconductor Devices, General Specification 

MIL-S-5541 - Chemical Film Finishes 

MIL-G-5514 - Packings, Installation and Gland Design 
Hydraulic, General Specification for 
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MIL-I-6866 - Inspection, Penetrant Methods of 

MIL-S-8879 - Screw Threads, Controlled Radius Root with 
Increased Minor Diameter, General Specification for 

MIL-I-6868 - Inspection Process, Magnetic Particle 

MIL-H-27601 - Hydraulic Fluid, Petroleum Base High 
Temperature, Flight Vehicle 

MIL-R-83248 - Type, Class 1 Rubber, Fluorocarbon Elastomer 
High Temperature Fluid and Compression Set Resistant O-Ring 

MS33540 - Safety Wiring and Cotter Pinning, General 
Practices for 

MS33649 - Bosses, Fluid Connection Internal Straight Thread 

Other Publications 
For requirements not covered above, materials, processes, 

and standard products shall be selected in accordance with specifi- 
cations or standards from the sources indicated below and in the 
order of precedence shown: 

1. Federal specifications and standards as listed 
in the Index of Federal Specifications, Standards 
and Handbooks published by the General Services 
Administration. 

2. Military specifications and standards as listed 
in the Department of Defense Index of Specifications 
and Standards. 
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3. Industry Specifications and standards as listed in 
indexes published by recognized industrial associations 

including, but not limited to, the following without 

order of precedence: 
a. National Aerospace standards (NAS) as published 

by the National Aircraft Standards Committee of 
the Aerospace Industries Association. 

b. Aerospace Materials standards (AMS), Aerospace 
. Standards (AS), Aerospace Recommended Practices 

(ARP) and Aerospace Information Reports (AIR) 
published by the Society of Automotive Engineers. 

3.0 REQUIREMENTS 
The active control landing gear system shall be designed 

in accordance with the requirements of this specification. The 
equipment shall meet the performance requirements when installed on 
the aircraft during conditions of landing, taxi, and take-off, and 
under the conditions of paragraph 3.1.2.1. 

3.1 System Function and Definitions 

3.1.1 System Function 
The ACLG shall operate as a closed loop to command the 

wing gear interface force to the level of the generated limit force. 

3.1.2 Item Definition (FigureB-1) 
The active control main landing gear system (ACLG) ofthe supersonic 

airplane is a dual system, each set of which consists of a modified 
strut, a servovalve, an accumulator, an electronic controller, 
cockpit-mounted sink rate selector, and interface hardware tieing 
into existing hydraulic and electrical supply systems, and into 
existing aircraft mounted sensors, all of which are defined in 3.1.2.2. 
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3.1.2.1 System Conditions 

The ACLG shall meet its performance requirements when the 

system parameters are as follows: 

Charging Gas 

Fully compressed gas volume 

Gas pressure, extended (70 OF) 

Oil volume (MIL-H-27601A) 

Strut Stroke 

Maximum oil temperature 

Minimum oil temperature 

Design landing load 

Design maximum sink rate 

Maximum landing load 

Tire pr.essure (unloaded) 

Touch down velocity 

Unsprung weight 

Wheel well temperature 

Gear position 

3.1.2.2 Associated Sensors 

Wing/Gear Accelerometers 

Range - * 4.12 g’s 

GN2 

7.375 x 10e4m3 (45 in3) 

1930 KPa. (280 PSIG) 

0.0156m3 (952 in3) 

0.508m (20 ins. ) 

121°C (250’F) 

-40 ‘C (-40’F) 

1.512 x 105N (34,000 lbs) 

3.048m/sec (10 ft/sec) 

2.335 x 105N (52,500 lbs) 

2758KPa (400 psig) 

93.27m/sec (306 ft/sec) 

3892N (875 lbs) 

-54 to 121’C (-65’to 250’F) 

down at all times 

Scale factor - 0.002 v/g @ 5vdc excitation 

Strut Hydraulic Pressure Transducer 

Range - O-l.72 x 104KPa. (o-2500 psi) 

Scale factor - 0.00232 mv/KPa (0.016 mv/psi) 
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Strut Stroke Transducer 

Tne Synchro 

Range * 0.254m (* 10 ins. ) 

Scale Factor - 19.69 VRMS/m (0.5 VRMS/in.) 

Scissors Switch 

Q-w open or closed (takeoff or landing mode indicator) 

Wheel Generator 

Tme D. C. generator 

Range O-2400 rpm (156 knots) 

Scale Factor - 19.6 mv/rpm 

3.1.3 Interface Definition 

The landing gear system shall be capable of operation when system 

parameters are as listed below, when powered by the existing aircraft hydraulic 

and electrical systems, and when interconnected with cockpit controls and air- 

craft mounted sensors as listed in paragraph 3.1.2.2. 

3.1.3.1 Hydraulic System 

The ACLG shall meet the requirements of this specification when 

used with an aircraft hydraulic system which is capable of supplying a pressure 

-4 kPa (3350 psig) and a maximum flow to 8.194 x 10 
-4 

of 2.31 x 10 m3/min. To 

provide the required transient flow the ACLG shall incorporate a 0. 0265m3 (7 gallon) 

accumulator for each of the two landing gear struts. 

3.1.3.2 Electrical System 

The electrical power available on the aircraft consists of 28vdc, 

26vrms. 400 Hz, and 115 vrms, 400 Hz in accordance with MIL-STD-704A. 

3.7 COCKPIT CONTROLS AND INDICATORS 

The cockpit control panel shall include a power switch, a sink 

rate selector (to be used in lieu of a sink rate sensor), a test button and status 

indicator lamps. 
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3.2 STRUT REQUIREMENTS 
The following sections define the configuration and 

requirements of the landing gear struts. 

3.2.1 Strut Modifications 
The struts shall be modified so that the hydraulic 

chambers at the lower end of the strut will connect to the control 
port of the servovalve thereby allowing the servovalve to port 
hydraulic fluid into or out of the strut as required to control the 

wing gear interface force. The basic gear structure shall remain 
intact. 

3.2.2 Materials 
Materials used shall be in accordance with the applicable 

military specifications and shall be compatible with those in the 
aircraft and landing gear. 

3.2.3 Pressure 
The hydraulic pressure in the strut shall not exceed 2200 

psi. Relief valves shall be used to meet this requirement. 

3.2.4 Installation Hardware 
Hardware such as supporting brackets for hydraulic iines shall 

be installed in the wheel well at locations agreed to by the aircraft 
manufacturer. 

3.3 ACCUMULATORS 
Accumulators shall be used for each strut to supply 

the necessary transient flow. 

3.3.1 Volume 
The total volume of the accumulator for each strut shall be 

0.0265m3 (7 gallons). 
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3.3.2 Location 
The accumulators shall be installed in the aircraft wheel 

well in a manner approved by the aircraft manufacturer. 

3.4 SERVOVALVE 
A servovalve shall be used for each strut and shall 

meet the following requirements. 

3.4.1 Performance 
The performance requirements are shown in the Appendix 

3.4.2 Envelope 
The servovalve envelope is shown in HR drawing 23241510 

3.5 CONTROLLER 
The controller shall be used as an integral part of the 

closed-loop servosystem which controls the aircraft wing/gear 
interface force during landing, taxi, and take-off. The controller 
shall accept sensor data, perform computations involving energy and 
momentum, effect prescribed control laws and provide an output 
current to the servovalve. 

The controller shall also contain the electronic circuitry 
necessary to test the system for failures and cause a reversion to 
a passive gear configuration if a failure exists. 

3.5.1 Requirements 

3.5.1.1 Input-Output Requirements 
The input/output signal requirements are shown in block 

diagram form in FigureB-2. Primary inputs and outputs are those 
signals required to perform the control function. Secondary inputs 

and outputs are those signals used for testing and status indication 
but which do not influence the control function. FigureB-3' defines 

the sign conventions and transducer polarities. 
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3.5.1.1.1 Primary Input Signals 
The primary input-output signals shall be those shown in 

TABLE B-I. 

3.5.1.1.2 Secondary Input-Output Signals 
Secondary input-output signals shall be as specified in 

TABLE B-II and&III respectively. 

3.5.1.2 Functional Controller Requirements 
The controller shall have three basic functional requirements 

as shown in FigureB-4. These are: 

1. Operating mode determination, 
2. Charging pressure regulationand limit force command determination, 
3. 'Control law implementation 

3.5.1.2.1 Operating Mode Determination 
The controller establishes the operating modes of the 

active control landing gear system upon application of electrical 
power and through its acceptance of condition states from sensors 
(3.1.2.2). 

The controller's "state" is defined in terms of "enable 
function" and "modes". 

3.5.1.2.1.1 Enable Functions 
The enable functions of the system (controller) are 

'Controller Enable" "Servoloop Enable", and "Integrator Enable". 

3.5.1.2.1.1.1 Controller Enable 
"Controller-Enable" is defined as that condition which 

allows the controller to perform calculations, This condition occurs 
when power is applied and the test confirms system integrity. 
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3.5.1.2.1.1.2 Servoloop Enable 
"Servoloop Enable" is defined as that condition which 

allows the controller to provide current to the servovalve coil. Under 

landing conditions, "Servoloop Enable" occurs when the kinetic 

energy of the aircraft equals the work potential of the strut. Under 

take-off or taxi conditions it occurs upon application of power. 

3.5.1.2.1.1.3 Integrator Enable 
"Integrator Enable" is defined as that condition which 

allows the integrator, which generates the wing-gear velocity from 

the wing-gear acceleration,to function. It occurs at touchdown. This 

enabling function is necessary in order to prevent integrator drift. 

3.5.1.2.1.2 Modes 
The modes of the system (controller) are "Landing", 

"Take-off" and "Test". 

3.511,2.1,2,1 Landing Mode -- 
The landing mode is selected by the controller when 

power is applied,fhe scissors switch is open and a successful test 
has been completed. The controller shall then commence computation 
of kinetic energy and strut work potential in the manner shown in 
Figure B-5. The controller shall not enable the servoloop until the 
kinetic energy is less than the work potential of the strut. 

The landing mode encompasses several phases, each imposing 
a different functional demand on the controller. These phases are: 

1. passive phase 
2. impact active control 
3. transition 
4. rollout and taxi 
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3.5.1.2.1.2.1.1 Passive Phase 

In the passive phase the controller shall: 

1. Close an auxilliary pressure loop to maintain the strut pres- 

sure at its charging value. 

2. Compute kinetic energy of the aircraft, work potential of the 

strut and compare these values. 

3. Sample and hold value of the wing-gear interface force 

(wing-gear acceleration). 

3.5.1.2.1.2.1.2 Impact Active Control 

The impact active control phase shall commence when the 

energy comparison indicates that the work potential of the strut equals or ex- 

ceeds the kinetic energy of the aircraft. Upon such occurrence the controller 

shall: 

1. enable the servoloop 

2. discontinue energy computations 

3. maintain a constant limit force 

4. deliver a current to the servovalve in accordance with 

the control laws 

5. calculate the velocity at which transition is to commence, 

in accordance with the relationships shown in Figure B-6, 

and compare this to the actual velocity to determine the starting 

point of transition. 

3.5.1.2.1.2.1.3 Transition 

The transition to the rollout phase shall commence when 

the wing/gear interface velocity becomes equal to the transition velocity. 

During transition the controller shall: 

1. Linearly decrease the limit force command to a predetermined 

mjnimum force (F min ). 

2. Maintain active control about Fmm as long as F 
w 

is greater 

than Fmin or less than -F min. 
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3. Set the limit force command to zero and disable the force 

loop when F 
w 

becomes less than Fmm. 

3.5.1.2.1.2.1.4 RolloutandTaxi -- 
The rollout phase shall commence when the limit force 

command in the transition phase reaches zero. During the rollout phase the 

controller shall maintain active control with the limit force command equal 

to Fmin as long as F 
w 

is greater than Fmm or F 
wg 

is less than -F min’ For 

values of F 
w 

less than Fmm or greater than -F min, the limit force command 

shall be set to zero and the force loop disabled. The controller shall remain in 

the rollout mode until takeoff occurs or power is removed. 

3.5.1.2.1.2.2 Takeoff Mode 

The controller shall automatically select the takeoff mode 

of operation when: 

1. Power has been applied. 

2. The scissors switch is closed. 

During takeoff the limit force command shall be zero and 

active control maintained about this limit force command. 

3.5.1.2.2 Limit Force Command Computation 

The limit force shall be the command to the servoloop and 

shall serve as the desired wing/gear interface force. The limit force command 

shall be generated according to the requirements of each mode and phase as 

described below. 

3.5.1.2.2.1 Landing Mode 

3.5.1.2.2.1.1 -PassivePhase 

Commencing with controller enablement and continuing until 

the servoloop is enabled the effective limit force command shall be zero. 
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3.5.1.2.2.1.2 Impact Active Control Phase 

From the time the servoloop is enabled until the start of 

the transition phase the limit force command shall be constant, and equal to the 

value of the wing/gear interface force at the time the servoloop is enabled. 

3.5.1.2.2.1.3 Transit ion 

The limit force shall linearly decrease at a specified rate, 

as shown in Figure B-7, from its value at the start of transition to Fmin at 

which time FLC will be set to zero and the force loop disabled. 

3.5.1.2.2.1.4 Rollout and Taxi 

During the rollout and taxi phase the limit force command 

shall be zero or f F min’ 

3.5.1.2.2.2 Limit Force Command - Takeoff Mode 

In the takeoff mode of operation the limit force command 

shall be zero. 

3.5.1.2.3 Control Laws 

The controller shall implement the control laws shown in 

Figure B-8 and the transfer functions of TABLE B-IV. 

3.5.1.2.4 Pos it ion Loop 

The ACLG shall incorporate a low response position loop 

for the purpose of returning the’strut to its static position during the rollout 

phase of the landing. 

3.5.1.2.5 Auxiliary Pressure Loop 

An auxiliary pressure loop shall be incorporated for the 

purpose of setting and maintaining the static hydraulic pressure of the gear. 

Whenever the servoloop is enabled’the ausiliary pressure loop shall be disabled. 

3.5.1.2.6 Dynamic R.equirements 

The loops of the ACLG shall meet the dynamic requirements 

of this section. 
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3.5.1.2.6.1 Force Loop 

The force loop shall meet the following requirements: 

Amplitude : Flat, to within 3 db, to TBD. Peaking shall 

not exceed 3 db . 

Phase: Not to exceed 90” lag at TBD. 

3.5.1.2.6.2 Posit ion Loop 

The position loop shall meet the following requirements 

when operating with the force loop closed: 

Peaking frequency: approximately 0.1 Hz, peaking not to 

exceed 5 db. 

Phase: approximately 90° lag at the peaking frequency. 

These parameters are not critical. 

3.5.2 (See Schematic, Figure B-9) Design 

The controller shall be designed to meet all the requirements 

of this specification and shall provide safe and reliable operation. 

3.5.2.1 Computational and Control Law Implementation 

All computations and implementation of transfer functions 

shall be accomplished by means of analog circuitry in order to minimize the 

physical size of the controller and to optimize the controller response. 

3.5.2.1.1 Limit Force Command 

The limit force command signal shall be the wing-gear 

interface force during the passive phase. This signal shall be applied to a sample 

and hold circuit, but since the servoloop is disabled during the passive phase the 

effective limit force command is zero. At the start of the impact active control 

phase, the input to the sample circuit shall be disconnected thus holding the 

limit force command signal constant at the last sampled value of the wing-gear 

interface force. During the transition phase the hold circuit shall decay in 

a linear manner to decrease the limit force command to a preset minimum force 

‘FmirI and for values of the wing-gear interface force less than F min 
or greater 

then -Fmin the limit force command shall be set to zero. 
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3.5.2.1.2 Wing Gear Velocity Computation 
The wing gear velocity signal shall be generated by 

integration of the signal from the wing/gear accelerometer. Means 
shall be provided for enabling the integrator at the time the 
controller is enabled and disabling it when the controller is 
disabled. 

3.5.2.1.3 Energy Computations 

3.5.2.1.3.1 Kinetic Energy of the Aircraft 
The signal representing kinetic energy of the 

aircraft shall be computed by mathematically squaring the wing/gear 
interface velocity signal by means of an analog multiplier and attenu- 
ating it by one half as shown in Figure B-10. 

3.5.2.1.3.2 Work Potential of the Strut 
The signal representing work potential of the strut 

shall be computed by subtracting the strut stroke signal from a 
constant signal representing maximum stroke and multiplying this 
signal by the wing/gear acceleration signal, using an analog multiplier 
as shown in Figure B-10. 

3.5.2.1.4 Transition Velocity Computation 
The transition velocity shall be computed by using an 

analog multiplier to mathematically square the signal representing the 
limit force command during the impact active control phase, and 
attenuating it by a constant which represents the reciprocal of the 
product of twice the aircraft mass per gear and the transition decay 
rate (R) as shown in Figure B-10. 

3.5.2.2 Comparisons 
Comparisons for mode, phase determination and failure 

detection shall be accomplished by analog comparators driving analog 
switches. 
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3.5.2.3 Servovalve Driver 
The power stage of the controller shall be capable of 

supplying 250 ma into a 200 ohm load. 1t“s output impedance shall 
exceed 100 kilohms. 

3.5.2.4 Controller Inputs (See Figure B-11) 

3.5.2.4.1 Initial Sink Rate 
The controller shall be so designed that it can 

accept a signal from a sink rate sensor or a signal from a variable 
source representing sink rate which is set by a control on the 
front panel ofthe controller or a control inthe cockpit. 

3.5.2.4.2 Servovalve Bias 
The servovalve bias command shall be generated by a 

Control which shall be capable of providing a DC voltage of 0 to f 10VDC. 

3.5.2.4.3 Strut Position Command 
The strut position command as indicated in Figure B-8 

shall be derived from a control which is capable of providing a DC 
voltage of 0 to f 10 VDC. This signal determines the static position 
of the strut, 

3.5.2.4.4 Strut Position Bias Signal 
The strut position bias signal, as indicated in Figure 

B-8, shall be variable from 0 to 2 10 VDC. It is required in order 
to produce a null signal when the strut is at its design static deflection. 

111 



3.5.2.4.5 

sensors: 

Sensor Inputs 
The controller shall accept inputs from the following 

in 

Wing/gear accelerometer 
Strut position sensor 
Strut hydraulic pressure transducer 
Characteristics of the signals shall be as described 

3.5.2.4.6 Wing/Gear Accelerometer Bias Signal 
The wing/gear accelerometer bias signal as indicated 

in Figure B-9, shall be variable from 0 to + 10 volts. It is 
required to produce a null signal when the accelerometer is mountedto 

output a signal equivalent to a positive one G-unit. 

3.5.2.4.7 Top Panel Test Inputs 
Provisions shall be included for inserting test signals 

into the controller by means of top panel jacks as shown in Figure B-12 

3.5.2.5 Front Panel Outputs (See Figure B-13) 
Buffered test outputs shall be available at front panel 

jacks as shown in Figure B-12. 

3.5.2.6 Rear Panel 
The rear panel of the controller shall contain the 

connectors, suitably labeled, as shown in Figure B-14. 

3.5.2.7 Servovalve Current 
The controller shall provide an output current to the 

servovalve. The characteristics of the servovalve driver shall be 
as defined in paragraph 3.5.2.3. 
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3.5.2.8 Flight Safety 
The controller shall incorporate means for augmenting 

the safety of the aircraft as defined in the following paragraphs. 

3.5.2.8.1 Built-in Test 
The controller shall incorporate means for determining 

the functional integrity of the system prior to landing or take-off. 
The test shall consist of the following: 

3.5.2.8.1.1 Pre-Land 
When a cockpit mounted test button is depressed a 

simulated acceleration (wing/gear force) and strut compression shall 
be applied to the controller. The servovalve stroke signal shall be 
compared to the required signal at a point in time when the limit 
force command is approximately half-way down the ramp during the 
transition phase. A difference in these signals,'in excess of a thresh- 
old value shall constitute a failure. Otherwise a green "Test in Progress" 
lamp in the cockpit shall be illuminated during the test and‘extinguished 
upon successful completion of the test. 

3. 5. 2. 8. 1.2 Accelerometers 

The accelerometer shall be tested by monitoring the output 

to determine if its signal is in the range of 0 g's. An incorrect signal shall 

constitute a failure. 

3. 5.2. 8. 1. 3 Strut Stroke Transducer (Synchro) 

The synchro circuitry shall incorporate a self-test feature 

to detect failures. It shall be accomplished by applying a voltage across the 

unusedwinding and each of the usedwindings and determining if a.currentflows. 
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3.5.2.8.1.4 Auxiliary Pressure Loop 
The auxiliary pressure loop shall be tested by 

monitoring the loop error. A signal in excess of a threshold value 

which exists for a fixed amount of time shall constitute a failure. 

3.5.2.8.2 Passive Reversion 
An indication of any failure, as described in paragraph 

3.5.2.8.1 in either channel shall cause currents to be latched out 
from both servovalves which will cause the spool centering springs to 
null the valves andenergize a solenoid valve to prevent flow into or outofthe 

struts. An amber light in the cockpit shall be illuminated to indicate that the 

gear is in a passive state. 

3.5.2.9 Power Section 
The power section shall accept 115 V RMS 400 He, 

26 V RMS, 400 He and 28 VDC power from the aircraft power system and 
shall generate the DC voltages necessary for controller operation 
as shown in Figure B-15. 

3.5.2.10 External Electrical Connectors 
Connectors used for interconnection with the transducers, 

servovalves, and cockpit signals shall be arranged as shown in 
Figure B-16. 

3.5.2.11 Parts 
Electronic parts used in the controller shall be of 

military specification quality. 

3.5.2.12 Packaging 
The controller shall be contained within a single enclosure 

suitable for mounting in the electronics bay of the aircraft. Modular 
construction shall be employed to the extent necessary to provide 
easy access for maintenance purposes. 
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Strut Work Potential = H (igwg) (%MAX 3) 

Kinetic Energy = (+)( +) ( vs -/~WGd~t)2 

Active control shall be initiated when: 

Strut Work Potential > Kinetic Energy 

Or, in equation form: 

Condition For 
AC tive Control 

Initiation 

where, 

ZWG = Wing-Gear Acceleration, g’s 

J- ‘WG 
dt = Integral of Wing-Gear Acceleration 

with respect to time, m/set (inlsec) 

vS = Initial Airplane Sink Rate, m/set (in/set) 

X MAX = 
Maximum Strut Stroke, m (in) 

xS 

g 

= Strut Stroke, m (in) 

Gravitational Acceleration = 9.804 m/set 
2 2 

= (386 in/set ) 

FIGURE B-5 

ENERGY RELATIONSHIP S 
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The wing-gear interface velocity at which transition occurs 

shall be computed as follows: 

'T = FLIP 
2w R 

-r 

where, 

vT 

FLI 

1 Transition starts when VT becomes 
equal to the wing-gear interfa:? velocity 
(touchdown sink rate minus J XWG .clt 

J 

= Transition Velocity, m/set (idsec) 

= Limit Force Command during N (lb) 
impact 

= Airplane mass per main gear 1.388 x 104Kg (30,600 lbm) 

= Limit Force Transition Rate 4.448 x 105N (100,000 lb/set 
as defined in Figure VII. 

= Gravitational Acceleration 9.804 m/sec2 (386 in/sec2) 

FIGURE B-6 

TRANSITION VELOCITY COMPUTATION 
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The limit force command from,the beginning of the transition 

phase to the beginning of the rollout phase shall be computed 

as follows: 

I FLT = FLI - RT 
I 

IF Fwg I 
IF F I - wg 

I 
I 

wg 
< FD then 
= 0 and the force loop 

is open =wg = Wing-gear interface force 
‘-LT 

FD = Preset limit force where, 

FLT = Limit Force Command During Transition, N (lb) 

FLI = Limit Force Command Prior to 
Transition N (lb) 

R = Limit Force Transition Rate,4.448x105N/sec (100,000 

T = Time set 
lb/set) 

FIGURE B-7 

LIMIT FORCE COMMAND DURING TRANSITION PHASE 
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F7l REPRESENT AN ANALOG MULTIPLIER 

REPRESENTS AN ANALOG COMPARA 

zw, 

Xmax 4. 

c 3 
- 

TOR 

COMPARISON OF KINETIC ENERGY AND WORK POTENTIAL 

OF THE STRUT. 

vs-vwg 

COMPARISON OF WING-GEAR VELOCITY AND 
TRANSITION VELOCITY 

FIGURE B-10. COMPUTATIONS AND COMPARISONS 
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FIGURE B-12 

CONTROLLER FRONT PANEL SKETCH 
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PARAMETER 

ling-Gear Acceleration 

itrut Position 

:nitial Sink Rate 

itrut Pressure- 
Hydraulic 

Touchdown indication 

Takeoff or Land 

TABLE B-I 

PRIMARY INPUT SIGNAL SPECIFICATIONS 

UNITS 

g's 

Meters 
(inches) 

Meters/set 
@nches/sec > 

Yolts 

volts 

volts 

TYPE 

Analog 

Analog 

Analog 

Analog 

Logic 

Logic 

SOURCE 

Accelerometer 

Synchro 

Front Panel Control or 
Sink rate sensor 

Pressure Transducer 

Wheel Generator 

Aircraft scissors switch 

SIGNAL 
RANGE 

:POLARITY 

z4.12 g's See Fig. 
3.1-3 

l-0.508 m See Fig. 
10 to 20 in.) 3.1-3 

I-2.54 m/s -- 
10 to 100 in/ 

se 1 I 0-1.728$.x; o psI= o 

(o-2500 psi) ,~~~:~,~ $ 

O-2400 RPM Rotation 
= + volts 

0 or15VDC 15 VDC= 
Weight on 
gear. 



PARAMETER UNITS 

Limit Force 
Command 

Wing-Gear 
Acceleration 

Wing-Gear 
Velocity 

Strut Position 

Servoloop 
Enable 

Integrator 
Enable 

<ifs > 

g’s 

glT3%> 
meters 
gnches) 

Volts 

Volts 

* Lo 
Lo 

I 

TYPE 

lnalog 

inalog 

Analog 

hnalog 

Logic 
Level 

Logic 
Level 

ic l= 0 
tc 01 +2 

TABLE B-I I 
SECONDARY INPUT SPECIFICATIONS 

SOURCE 

Front Panel 
Jack 

11 

SIGNAL 
RANGE 

, 846x105N 
200,000 lbs) 

f5g 

l-2.54 m /set 
0 to 100 in/se 

I-.508 m 
0 to 20 in) 

c*> 

(*I 

POLARITY SCALE FACTOR 

i-N = - Accel. 

See Fig. 3.3 

See Fig. 3.3 

See Fig. 3.3 

-- 

-- 

1,102~10-~ V/N 
(4.902 x 10 -5 V/lb) 

2 MV/g @ 5 vdc 
exe itat ion. 

3.937 vlmlsec 
0.1 Volts/in/set) 

19.68 v/m 
(0.5 volts/inch) 

-- 



-.-.__--- 

PARAMETER UNITS 

Servovalve Command ma 

Wing-Gear 
Acceleration 

g’s 

Strut Position 

Strut Position Error 

Strut Pressure- m psi 
Hydraulic 

Force Error $s, 

Limit Force Command (ifs) 

Wing-Gear Velocity gE$ 

Servoloop Enable -- 

Integrator Enable -- 

Takeoff Mode 

Landing Mode 

r- 

TABLE B-III 

SECONDARY OUTPUT SPECIFICATIONS 

-- 
rYPE ’ 

-A 
Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Analog 

Logic 
Level 

Logic 
Level 

Visual 

Visual 

r FRONT PANEL 
SC 

iack 

x 

X 

X 

X 

X 

X 

X 

X 

X 

X 

JRCE 
'isus;splay 

X 

X 

T 
1 

SIGNAL 
RANGE , SCALE FACTOR 

f 10 v l-176 ma/(V Force Error) 

f 10 g 1.8 V/g 

0 to ,508 m ‘9.843 v/m 
(0 to 20 in) (0.25 V/in) 
0 to ,508 m / (90. f;$j;/nm) 

(0 to 20 id i . 

Pa 

j. 896x105N 
(200,000 lb) 

3. 896x105N 
(200,000 lb) 

-2.54 mlsec 
to 100 in/se 

-- 

-- 

-- 

-- 

1.102x10 -5 V/N 
:4.902 x 10-s V/lb) 
1.102~10-~ V/N 
4.902 x lO-5 V/lb) 

13.937 vlmlsec 
~1’0.1 V/in/set) 

1 -- 

-- 

-- 

-- 



TABLE B-IV 
CONTROL LAW TRANSFER FUNCTIONS 

SYMBOL 
EF. FIGURE C-8 I TRANSFER FUNCTION I 

G1 KWG 

G2 (S2+2s2Wl S+W12)(TlS+l)(T3S+1)KA 

(S2+231 WlS+W12)(T2S+l)(T4S+1) 

KF 
TFS + 1 

PARAMETER VALUES 

KWG = 1.0 v/v 

T1 = 0.0281 set 

T2 = 0.0141 set 

T3 = 0.001 set 

T4 = 0.0001 set 

w1 = 251.2 rad/sec 

s2 = 0.1 

Sl = 5.1 
KA = 176 ma/v nominal 

(variable from 50% 
to 200% of nominal) 

KF = 0.00098 V/V 

TF = 0.1 set 
J,ap&xe Ooera -1 = tor -set 
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